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Abstract: For two given graphs G; and G, the Ramsey number R(G1, G2)
is the smallest integer n such that for any graph G of order n, either G
contains (G; or the complement of G contains Go. Let C), denote a cycle
of length m and K,, a complete graph of order n. In this paper we show
that R(Cy,, K7) = 6m — 5 for m > 7 and R(C7, Kg) = 43, with the former
result confirms a conjecture due to Erdos, Faudree, Rousseau and Schelp
that R(Cy, Kp) = (m—1)(n—1)+ 1 for m > n >3 and (m,n) # (3,3) in
the case where n = 7.

Key words: Ramsey number, Cycle, Complete graph

1. Introduction

All graphs considered in this paper are finite simple graphs without loops. For two
given graphs G and Ga, the Ramsey number R(G1,G2) is the smallest integer n such
that for any graph G of order n, either G contains G or G contains Ga, where G
is the complement of G. The neighborhood N(v) of a vertex v is the set of vertices
adjacent to v in G and N[v] = N(v) U {v}. The minimum degree of G is denoted by
d(G). Let V1,Va C V(G). We use E(V1,V2) to denote the set of the edges between V;
and V. The independence number of a graph G is denoted by a(G). For U C V(G),
we write o(U) for a(G[U]), where G[U] is the subgraph induced by U in G. Define
02(G) = min{d(u) + d(v) | u,v € V(G) and wv ¢ E(G)}. A Wheel of order n + 1 is
W, = K1 + C,, and W, is a graph obtained from W,, by deleting a spoke from W,,.
A Book B, = Ky + K, is a graph of order n + 2. A cycle and a path of order n are
denoted by C,, and P,, respectively. We use mK,, to denote the union of m vertex
disjoint K,,. Let u,v € V(G) and s < t be integers. If G contains a (u, v)-path of order
[ for each | with s <1 < t, then we say u and v are (s,t)-connected in G. Let C be a
cycle. We denote by C the cycle C with a given orientation, and by C the cycle C
with the reverse orientation. If u,v € V(C'), then wC'v denotes the consecutive vertices



of C from u to v in the direction specified by C. The same vertices, in reverse order,
are given by vCu. Ifu= v, then uCv = {u}. We will consider uwCv and vCu both as
paths and vertex sets. We use u™ and u~* to denote the tth successor and predecessor
of u, respectively. For convenience, we write uT' =« and «~! = u~. For notations
not defined here, we follow [2].

The cycle-complete graph Ramsey number R(C,,, K,) was first studied by Erdds
et al. in [5]. In their paper, they asked the following question.

Question 1 (Erdos et al. [5]). For a given n, what is the smallest value of m such that
R(Cp,Kp)=(m—1)(n—1)+ 17

Furthermore, they posed the following conjecture.

Conjecture 1 (Erdoés et al. [5]). R(Cy,, Ky) = (m —1)(n — 1)+ 1 for m > n > 3 and
(m,n) # (3,3).

The conjecture was confirmed for n = 3 in early works due to Faudree et al. [6] and
Rosta [9]. Yang et al. proved the conjecture for n = 4.

Theorem 1 (Yang et al. [11]). R(Cy,, K4) = 3m — 2 for m > 4.
Bollobés et al. [1] showed that the conjecture is true for n = 5.
Theorem 2 (Bollobés et al. [1]). R(C,, K5) = 4m — 3 for m > 5.
Schiermeyer [10] confirmed the conjecture for n = 6.

Theorem 3 (Schiermeyer [10]). R(Cy,, Kg) = 5m — 4 for m > 6.

In a recent paper, Cheng et al. [3] showed that the conjecture is true in the case when
m =n =7, and obtained the following result.

Theorem 4 (Cheng et al. [3]). R(Cr, K7) = 37.

For the case where m < n — 1, only 13 exact values of R(C,, K,,), including 6
classical Ramsey numbers, are known, see Table 1. All the details in Table 1 can be
found in the survey [8].

In this paper our main results are the following:
Theorem 5. R(C,,, K7) = 6m —5 for m > 7.
Theorem 6. R(Cr, Kg) = 43.

Obviously, Theorem 5 shows that Conjecture 1 is true for n = 7. Let f(n) be the
smallest value of m such that R(C,,, K,) = (m — 1)(n — 1) + 1 for a given n. By the
known results (see [8]), we have f(3) =4, f(4) =4, f(5) =5, f(6) =5 and f(7) = 5.



Theorem 6 shows that f(8) < 7.

Ky K Ks Ky Ksg Ky
Cs 9 14 18 23 28 36
Cy 14 18 22 26
Cs 21 25
Cs 31

Table 1. Known Ramsey Numbers R(C,,, K;,) for m <n —1

2. Proof of Theorem 5

In order to prove Theorem 5, we first establish some lemmas.

Let G be a graph, C a cycle of length m > 7in G and u € V(H) = V(G) — V(C).
Set No(u) = {z1,z2,...,2r}, where the indices follow the orientation of C; A =
{ay,a9,...,a;}, where a; = x;r; B = {b1,b,...,b}, where b; = z;_ ;; and I; = aiabi,
the subscripts are taken module k. These notations will also be used in Section 3.

If G contains no Cp,41, then we have the following lemmas (1-8).

Lemma 1. Both {u} U A and {u} U B are independent sets, and u has no consecutive
neighbors in C.

Proof. If a;a; € E(G) with i # j, then uxjﬁaiajﬁxiu is a Cp41, a contradiction. If
v,v" € Ngo(u), then wvt Cou is a Cypyyi1, again a contradiction. |

Lemma 2. Let P be a (uj,ug)-path of order s > 2 in H, vi,ve € V(C) and s —
|vf6’>v2_] =t > 1. If uyvi,ugvs € E(G), then t # 1. Furthermore, if ¢ > 2 and
w,w € v, Cuy, then wwtt ¢ E(G).

Proof. If t = 1, then UlﬁUQUQﬁUlUl is a Oy, 41, a contradiction. If ¢t > 2 and w,w™ €
’1126)’01, then UlﬁUQUQﬁww+tﬁU1u1 is a Cpt1, again a contradiction. |

Lemma 3. Let v,w € V(H) — {u}. If v € N(a}), w € N(a;r) and i # j, then
vw ¢ E(G). Similarly, if v € N(b;), w € N(b;) and i # j, then vw ¢ E(G).

Proof. Otherwise, uxjﬁa;rvwa;rﬁxiu is a Cpy41, a contradiction. As for the latter
part, the proof is similar. 1



Lemma 4. If v € Ng(a;) and u # v, then {u,v} U A is an independent set. Similarly,
if v e Ng(b;) and u # v, then {u,v} U B is an independent set.

Proof. By Lemma 2, uv ¢ E(G). By Lemma 1, a;v ¢ E(G). Let j # i and ajv € E(G).
If |I;| >2or |I;)] =1and j # i+ 1, then uaci(aajvafﬁwju is a Cy,41, a contradiction.
If |I;] =1and j =i+1, then a; = a;r2, which contradicts Lemma 1. Thus, noting that
{u} U A is an independent set by Lemma 1, we see that {u,v} U A is an independent
set. As for the latter part, the proof is similar. 1

Lemma 5. Let |[;| > 2, |I;_1] =1 and k > 3. Suppose y € V(H) and aj € N¢(y) for
all j with |I;| > 2. If uvw is a P3 in H — {y}, then {w} U A is an independent set.

Proof. By Lemma 2, wa; ¢ E(G). If wa;,—; € E(G), then by Lemma 2, we have |I;_a| >
2. Thus, uvwai,lﬁa;r_an;rﬁaji,gu is a Cpt1, a contradiction. Let j # ¢,9—1. Assume
wa; € E(G). If |I;| > 2, then uvwajﬁajya;rﬁa:i_lu is a Cpa1, a contradiction. If
|I;| =1, then |I; 41| > 2 by Lemma 2. Thus, uvwajﬁajyaﬁlﬁxiu is a Cppa1, again a
contradiction. |

Lemma 6. Let v',v € V(H) and do(v') =1 > 1. If v/ and v are (3, m—1+1)-connected
in H, then N¢(v) = 0.

Proof. Let No(v') = {y1,92,...,u}, where the indices follow the orientation of C.
Suppose w € N¢(v). Choose y; such that p = min{|w6')yi|, |y26'>w|} is as large as
possible. Obviously, p < m/2 + 1. Since G contains no Cy,+1, we have [ < m/2. Thus
we have m — [+ 1 > p. If p > 4, then by Lemma 2, H contains no (v’, v)-path of order
p — 1, which contradicts that v' and v are (3, m — [ + 1)-connected in H. Thus we may
assume p < 3. In this case, we must have p > [ by the choice of y;. Thus, since v’ and
v are (3,m — [+ 1)-connected in H, H contains a (v, v)-path of order m —p+ 1, which
implies that G contains a Cj,+1, a contradiction. 1

Let k> 1land Z; = {v|v € V(H) and dg(u,v) =i} for i = 1,2. Suppose 6(G) > m
and dc(h) < 2 for each h € V(H). We have the following two lemmas(7-8).

Lemma 7. If G[Z;] contains a hamiltonian path, then there are three vertices z1, 22, 23 €
Zy such that No(z;) = 0 and {21, 22, 23} is an independent set.

Proof. Let P = y; - - - yp be a hamiltonian path in G[Z;] and Y; = Ny, (y;) for 1 <1i < p.
Since G contains no Cp,11, 6(G) > m > 7 and do(u) < 2, we have 5 < m —2 <p <
m — 1. Obviously, u and y; are (2,m — k + 1)-connected in H for i = 1,p. By Lemma
6, Nc(y;) = 0 for i = 1, p, which implies that Y; # 0 for i = 1, p.

If p=m — 1, then y2 and u are (2,m — 1)-connected in H. If do(y2) > 2, then by
Lemma 6 we have k = 0, which contradicts £ > 1, and hence we have do(y2) < 1. If
Y> = 0, then since dy(y2) > m — 1, we have yoy, € E(G), which implies that « and
ys are (2,m)-connected in H. By Lemma 6, Nc(y3) = ), which implies that Y3 # (.



Take z1 € Y1, 220 € Yo if Yo # D and 20 € Y3if Yo =0, and z3 € Y),. If z; = z; or
zizj € E(G) for some 4, j € {1,2,3} and i # j, then G contains a Cy,1, a contradiction.
Obviously, u and z; are (3, m)-connected in H for 1 <4 < 3. By Lemma 6, No(z;) =0
for 1 <4 < 3. Thus, z1, z20 and z3 are the vertices as required.

If p = m — 2, then since §(G) > m and do(u) < 2, we have k = 2 and |Y;| > 2
for i« = 1,p. Since G contains no Cp,41, we have E(Y;,Y;) = 0 for i € {1,p} and
J# i IfYinY| =1or |YiNY,| =2and |[Y1UY,] >3 or [Y1NY, > 3, then
we have a(Y7 UY,) > 3. Let {z1,22,23} C Y; UY), be an independent set. Since u
and z; are (3,m)-connected in H, by Lemma 6, No(z) = 0 for 1 < ¢ < 3. Thus,
21,29 and zg are the vertices as required. If |[Y; NY,| = |Y1 UY,| = 2, we assume that
Y1 =Y, = {21, 22}. In this case, noting that ygylzlyp?yzl and ygylzlyp?yg are (Y2, u)-
paths of order m — 1 and m, respectively, we see that u and ys are (2, m)-connected
in H. By the symmetry of y2 and y,—1, v and y,_1 are also (2, m)-connected in H.
Thus, by Lemma 6, we have N (y;) = 0) for i = 2, p — 1, which implies that |Y;| > 2 for
i=2,p—1. IfYoUY,_; C {z1, 22}, then uylzlygﬁyp_lzzypu is a Cpy11, a contradiction.
IfYoUY,1 € {#1, 2}, say 23 € YaUY,_1 — {21, 22}, then 21, 29 and 23 are the vertices
as required. Thus we may assume that Y1 NY), = 0. If a(Y1) > 2, say 21,22 € Y7 and
2122 ¢ E(G), then for any z3 € Y}, 21,22 and z3 are the vertices as required. Thus
by the symmetry of Y7 and Y),, we may assume Y; is a clique of order at least 2 for
i =1,p. Since p=m — 2, y2 and u are (2, m — 2)-connected in H. If dc(y2) > 3, then
by Lemma 6 we have k = 0, which contradicts k& = 2, and hence d¢(y2) < 2. Noting
that 6(G) > m, we have dy(y2) > m — 2. Thus, if Y5 = 0, then we have yoy, € E(G),
which implies that u and y3 are (2,m — 1)-connected in H. By Lemma 6, N¢(y3) = 0,
which implies that Y3 # (). Let 21 € Y1, 20 € Yo if Yo # () and 25 € Y3 if Y5 = (), and
z3 € Y), then u and z; are (3, m — 1)-connected in H. By Lemma 6, No(z;) = 0 for
1 < i < 3. Since Y; is a clique of order at least 2 for i = 1,p and E(Y;,Y;) = 0 for
i€ {1,p} and j # i, we see that zo ¢ {21, 23}, and hence z;, 29 and z3 are the vertices
as required. |

Lemma 8. If G[Z1] = K, U K, then o(Z3) > 4.

Proof. Let Zy = Z11 U Z12 and G[Zy;] a clique for i = 1,2. Set Z11 = {y1,...,¥p},
Z12 = {Ypt1,- - Uptqls Yi = Nzy(yi) for 1 < i < p+q and Zy; = N(Z1;) N Zy for
i =1,2. Since 6(G) > m and d¢(u) < 2, we have p+q > m — 2.

If max{p,q} > m — 2, then since G contains no C, 1, we have p < m — 1. If
p = m — 1, then u and y; are (2, m)-connected in H for 1 < i < p. By Lemma 6,
Ne(y;) = 0, which implies that ¥; # 0 for 1 <i < p. HY;NY; # 0 or E(Y;,Y;) # 0
for some i,7 € {1,2,3,4} with ¢ # j, then G contains a C,y1, which implies that
a(UL,Y;) > 4, and hence a(Z3) > 4. If p = m — 2, then u and y; are (2,m — 1)-
connected in H for 1 < i < p. By Lemma 6, dc(y;) < 1, which implies that Y; # 0 for
1<i<p IHYiNY;#0, then u and y; are (2,m)-connected in H for 1 < i < p. By
Lemma 6, N¢(y;) = 0, which implies that |Y;| > 2 for 1 <i < p. Let 213 € Y1 NY; and



zi € Yi—{z} for 3 <i<5. If z; = z; for some i,j € {3,4,5} with i # j or z;2; € E(G)
for some i,j5 € {1,3,4,5} with i # j, then G contains a Cy,+1. Thus, {21, 23, 24, 25} is
an independent set of size 4, and hence «(Z2) > 4. By symmetry, we may assume that
YiNnY; =0 forall 1 <i<j<p. Since G contains no Cy,41, we have E(Y;,Y;) = 0 for
i # 7, which implies that a(UL;Y;) > 4, and hence a(Z2) > 4. Thus we may assume
that max{p,q} <m — 3.

If Zo1 N Zaa # (), we assume that z4 € Nz, (yp) N Nz, (Yptq)- In this case, we have
p—+q =m—2 for otherwise G contains a C,+1. Assume without loss of generality that
p > q. It is easy to see that u and y; are (2, m)-connected in H for 1 <i <p—1. By
Lemma 6, No(y;) = 0 for 1 < i < p— 1. Thus, noting that p < m — 3 and 6(G) > m,
we have |Y;| >3 for 1 <i<p-—1. Since p+qg=m—2, m > 7 and p > ¢, we have
p>3. Let z; € Y; — {24} for i = 1,2. If p >4, we let z3 € Y3 — {24}. If p =3, then
2 < ¢ < 3, which implies that |Y,i| > 2. In this case, we let z3 € Y41 — {z4}. If
z; = z; for some 4,5 € {1,2,3} with ¢ # j or z;2; € E(G) for some i,j € {1,2,3,4}
with i # j, then G contains a Cy,4+1. Thus, {z1, 22, 23, 24} is an independent set of size
4, which implies that «(Z2) > 4. Hence, we may assume that Za; N Zoy = ().

If E(Z1,Z22) # (), then G contains a Cy,+1, and hence we have F(Za, Za3) = 0.

Assume that min{p, ¢} > 2. If a(Z3) < 3, then since Z31NZ29 = ) and E(Za1, Za2) =
(), we may assume «(Z2;) = 1. Since p < m — 3, §(G) > m and dco(y;) < 2, we have
Y; #0 for 1 <i <p. Let |Za1| = r. Since 6(G) > m and de(y;) <2 for 1 < i < p, we
have p+r>m—2. If p=2 and Y1 NY5 = 0, then since dc(y;) <2 and §(G) > m > 7,
we have |Y7 UYa| > 2(m —4) > m — 1. Noting that both G[Z11] and G[Z2;1] are cliques,
we see that G contains a Cp,y1. If p =2 and Y1 NY5 # 0 or p > 3, then since both
G[Z11] and G[Z91] are cliques and Y; # () for 1 <1 < p, we see u and y; are (2,p+7r+1)-
connected in H for 1 <i <p. If p+r =m — 2, then by Lemma 6, we have do(y1) < 1,
which implies that p +r > m — 1, a contradiction. If p+r = m — 1, then by Lemma
6, we have N¢(y;) = 0, which implies that p + r > m, again a contradiction. Thus we
have p+r > m. In this case, we see that G contains a C),+1, and hence min{p, ¢} = 1.

Since min{p, ¢} = 1, max{p,q} < m — 3 and p+ ¢ > m — 2, we may assume that
p=m—3and g = 1. Obviously, u and y; are (2, m—2)-connected in H for 1 < i < p. By
Lemma 6, we have d¢o(y;) < 2, which implies that ¥; # () for 1 < i < p. Since G contains
no Cpy41, we have do(yp+1) < m/2, which implies that Y41 # 0 since 6(G) > m > 7.
Thus, noting that Zs; N Zoe = () and E(Z21, Zag) = 0, we have a(Z3) > a(Za) + 1,
and hence we need only to show «(Z21) > 3 in the following proof. If ¥; NY; = 0 for
1<i<j<p,weletz €Y, for 1 <i<4. If E(G[{z,22,23,24}]) > 2, then G con-
tains a Cp,4+1, a contradiction. If E(G[{z1, 22, 23, 24}]) < 1, then a({z1, 22, 23, 24}) > 3,
which implies that a(Z21) > 3. Thus we may assume that z; € ¥1 NYs. In this case, u
and y; are (2,m — 1)-connected in H for 1 <4 < p. By Lemma 6, do(y;) < 1, which
implies that |Y;| > 2 for 1 <i <p. Let z; € ¥; — {#z1} fori =2,3,4. HY;NY; =0
for {i,7} # {1,2}, then {22, 23, 24} is an independent set of size 3, which implies that
a(Za1) > 3. If there is some Y; NY; # 0 for {i,5} # {1,2}, we may assume that



YonYs; # 0 or YsNYy # 0. In both cases, u and y; are (2, m)-connected in H for
1 <4 < p. By Lemma 6, No(y;) = 0, which implies that |Y;] > 3 for 1 < i < p. If
YoNYs; # ), then Y3NYy = 0 for otherwise G contains a Cj, 1 and vice versa. If
YonYs £ 0, welet 20 € YoNYz and z; € YV; — {21,290} for i = 3,4. U Y3NYy # 0, we
let zg € YsNYyand z; € Y; — {21, 24} for i = 2,3. Thus, {22, 23,24} is an independent
set of size 3, which implies that a(Z21) > 3. |

Lemma 9 (Chvatal and Erdos [4]). If o(G) < k(G) + 1, then G has a hamiltonian
path.

Lemma 10 (Cheng et al. [3]). Let G be a graph of order 6m — 5 (m > 6) with
a(G) < 6. If G contain no Cy,, then G contains no W,,,_s.

Proof of Theorem 5. We use induction on m. If m = 7, then Theorem 5 holds by
Theorem 4. Assume that Theorem 5 holds for some given m > 7, we now show that
Theorem 5 holds for m + 1.

Let G be a graph of order 6(m + 1) — 5 = 6m + 1. Suppose to the contrary that
neither G contains a Cy,, 41 nor G contains a K7. If there is some vertex v € V(G) such
that d(v) < m — 1, then G’ = G — N[v] has an order of at least 5m + 1. Obviously, G’
contains no C,+1. Thus by Theorem 3, G’ contains an independent set of size at least
6. Clearly, any independent set of size 6 in G’ and v form an independent set of size 7
in G, a contradiction. Hence we have

I(G) > m. (1)
For any v € V(G), since G contains no Cy,+1, by (1) we see that
G[N (v)] contains no hamiltonian path. (2)

By the induction hypothesis, G contains a cycle of length m. Let C be a cycle of
length m, H = G — C and d¢(up) = k = max{dc(h) | h € H}. Define N¢(up), A, B
and I; as in Section 2. Among all the cycles of length m in G, we choose C such that k
is as large as possible and subject to this, min{|[;| | 1 <i < k} is as small as possible.
Let Uy ={u | v e V(H) and di(up,u) =i} for i = 1,2.

If max{|;| | 1 < i < k} =1, then since m > 7, we have k£ > 4. We now show
that this case cannot occur. Let v € U;. If N(v) N A # 0, say va; € E(G), then
by Lemma 2, xoxs, z3x4 ¢ E(G). Thus we have dy(z3) > 3 and dy(x4) > 2 by (1).
Assume that y € Ny(x4) — {uo} and z € Ny(x3) — {uo,y}. By Lemmas 2 and 3,
{up,y, 2} UA is an independent set of size at least 7, a contradiction. By Lemma 2, we
have Ne(v) N Ne(ug) = 0. Thus we have

Ne(v) =0 for any v € U;. (3)



For any v € Uy and w € Ny (v), by Lemmas 1 and 2, we see that
{w} U A is an independent set. (4)

Now, let v € Uy be given. By (1) and (3), we have d(v) = dg(v) > m. If «(G[Ng(v)]) >
3, then by (4) we have a(G) > 7, a contradiction. Hence we have a(G[Ng(v)]) < 2. By
Lemma 9 and (2), we may assume that G[Ng(v)] = K, U K, where p+ ¢ = d(v) > m.
If p>m—1o0rqg>m—1, then G contains a K,,, which contradicts Lemma 10.
Thus we have p < m — 2 and ¢ < m — 2, which implies that ¢ > 2 and p > 2. Let
up,u1 € Kp. If Ng(u1) € Uy U{ug}, then G[Ng(u1)] is connected. By (1) and (3),
d(ui) = dg(u;) > m. By Lemma 9 and (2), we may assume that a(G[Ng(u1)]) > 3. In
this case, we have o(G) > 7 by (4), a contradiction. Thus, there is some uy € Ny (uq)
such that upug ¢ E(G). If Ny(ug) N Ky = 0, then for any us € K, {uo, ug,ug} U A is
an independent set of size at least 7, a contradiction. If Np(uz) N K, # (), then it is
easy to see that G contains a C,41, again a contradiction. Thus we have

max{|L| | 1<i<k}>2. (5)

Since |H| = 5m + 1, by Theorem 3, H contains an independent set I of size 6.
Obviously, I is also a maximum independent set of G. Since |I| = 6 and m > 7, by the
choice of ug, we have k > 2. By Lemma 1, k£ < 5. Thus we have 2 < k < 5.

If k = 5, then by (5), there is some ¢ such that |I;| > 2. Since §(G) > m, we have
Ny (af) # 0. Assume that v € Ny(a;). By Lemma 4, {ug,v} U A is an independent
set of size 7, a contradiction. Thus we have 2 < k < 4.

Claim 1. Let |I;] > 2 and v € Ny (a]). If k = 4, then af € N(v) for all I; with |I;] > 2.

Proof. If there exists some j # i such that |I;| > 2 and a;rv ¢ E(G), then by (1),
there exists some w € NH(aj). By Lemma 3, wv ¢ E(G). Thus, {ug,v,w} U A is an
independent set of size 7 by Lemma 4, a contradiction. 1

We now distinguish the following two cases separately.
Case 1. min{|[;| | 1 <i <k} =1.

Since min{|[;| | 1 < i < k} =1, by (5), there exists some ¢ such that |I;| = 1 and
|I;+1] > 2. Assume without loss of generality that |I| =1, |I5| > 2 and vo € Ny(a3).
Set V; ={v | v e V(H) and dg(vo,v) =i} for i =1,2.

Claim 2. Uy NVy = 0.

Proof. Assume that Uy N'V; # () and wg € Uy NVy. Let W = Ng(wp) — {ug,vo}-
By Lemma 2, we have W N (U; U V;) = 0 and z129,a5a3® ¢ F(G). Thus we have
dy(r2) > 2 and dy(ag) > 2. Let v) € Ny(ag) — {vo}. By Lemma 2, vovf ¢ E(G).



If a(W) > 2, then for any wi,ws € W with wyws ¢ E(G), by Lemmas 1 and 2,
{up, vo, v(), w1, w2, a1, a2} is an independent set of size 7, and hence W is a clique. If
k = 4, then by Lemma 4, {ug,vo, vy} U A is an independent set of size 7, and hence
we may assume that & < 3. Assume that £k = 3. If |I3| = 1, then by Lemmas 2 and
4, we see that for any w € W, {ug,vo, v}, w} U A is an independent set of size 7, a
contradiction. If |I3] > 2, we let y € Ny (a3). If y & {vo,v}}, then by Lemmas 2, 3 and
4, {ug, vo, v(, y} UA is an independent set of size 7. If y € {vg, v} }, then by Lemmas 2, 4
and 5, {ug, vo, v, w} UA is an independent set of size 7 for any w € W, a contradiction.
Thus, we may assume that £k = 2. By (1) and the choice of ug, we have |[W| > m — 4.
Since dy(z2) > 2, we may let z € Ny (x2) — {ug}. If z € W or Ny (z) # 0, then since
W is a clique of order at least m —4, it is easy to see that GG contains a C},,+1, and hence
z¢ W and Ny (z) = 0. If 2 ¢ Ny(aj), then by Lemmas 1 and 2, {ug, vo, v}, z,w} U A
is an independent set of size 7 for any w € W, and hence we have z € N, H(a2 ). In this
case, C' = upxazay T Cziug is a Chy By the choice of C and ug, we have ajag ¢ E(G),
which implies that dg(ag) > 3. Let v € Ny(a3) — {vo,vh}. If vhv§ ¢ E(G), then by
Lemmas 1 and 2, {uo, vo,v), vy, w} U A is an independent set of size 7 for any w € W,
and hence vjvj € E(G). By Lemma 2, z ¢ {v(, v(}. If z # vo, then {ug, vo, v, 2z, w}UA
is an independent set of size 7 for any w € W, and hence z = vg. Thus, by Lemma
2, we have roa4 ¢ F(G), which implies that dg(z2) > 3. Let 2’ € Ny(x2) — {uo, 2}
Since vyvy € E(G), by Lemma 2, 2’ # v(. Thus, for any w € W, {ug, vo, v, 2, w} U A
is an independent set of size 7, a contradiction. 1

Claim 3. Let uguiuz be a Py in H—{vg}. If k = 3, |I3| > 2 and Ny (a3 )N Ny (aj) = 0,
then {uz} U A is an independent set.

Proof. By Lemma 2, we have ugas ¢ E(G). If usa; € E(G), then by Lemma 2,
arag,xoaq?,a3by ¢ E(G). If ugaz € E(G), then by Lemma 2, ajaj, x2b3, afad?® ¢
E(G). Thus we have dg(a3) > 2, dy(x2) > 2 and dy(ad) > 2 in both cases. Let
vy € Ny(ad) — {vo}, y € Nu(z2) — {uo} and wo,wf) € Ny(a3). If vovy ¢ E(G), then
by Lemmas 3 and 4, {ug,wo,vo,v)} U A is an independent set of size 7, and hence
vovy € E(G). Similarly, wow(, € E(G). Thus, we have y ¢ {vg, v} and yvg ¢ E(G) by
Lemma 2, and y ¢ {wo,w)} and ywy ¢ E(G) by Lemma 3. By Lemmas 1 and 4, we
see that {ug, v, wp,y} U A is an independent set of size 7, a contradiction. Thus we
have usay, ugas ¢ E(G), and hence {uz} U A is an independent set. 1

Claim 4. If k > 3 and Uy # (0, then Us is a clique.

Proof. If k = 4, then by Lemma 5 and Claim 1, we have E(Us, A) = (. If k = 3, then
by Lemma 5 and Claim 3, we have E(Us, A) = (). By Lemma 2, Ny, (vg) = (. By Claim
2, vg ¢ Uy. Thus, if a(Us) > 2, then by Lemma 4, we have a(Us U AU {ugp,v0}) > 7, a
contradiction. |

Claim 5. Let P =y -- -y, be a longest path in G[U;]. If K > 3, then p <m — k — 1.



Proof. If p > m — k, then ugy and y; are (2, m — k + 1)-connected in H for i = 1,p. By
Lemma 6, N¢(y;) = 0 for i = 1, p. Since G contains no Cj, 11, we have p < m — 1. By
(1) and the maximality of P, we have d,(y;) > m—p > 1 for i = 1,p. By Claim 4, Us
is a clique. Let P’ = yluoygﬁyp, then |P'| =p+ 1. If |(N(y1) UN(yp)) NU2| = 1, then
p=m—1. Let z € (N(y1) UN(yp)) NUs, then ylﬁypzyl is a Cp,41, a contradiction. If
|(N(y1)UN (yp))NUsz| > 2, then there are two vertices 21, z, € Us such that y;2; € E(G)
for i = 1,p. Since |Uz| > m — p and Us is a clique, G[Us] contains a (z1, zp)-path P” of
order m — p. Thus, the paths P’,P”, together with the edges yi121,ypzp form a Cpy1,
again a contradiction. 1

Claim 6. If k > 3, then for any u € Uy, Ny, (u) # 0.

Proof. Let Uy = Uy U {uo}. If Ny, (u) = 0, then Ng[u] C Uy. Let N(u) NU; = Uj. By
Lemma 2, N(vg) NU; = 0. By Lemma 5 and Claims 1, 3, we have E(U;, A) = (). Thus,
if «(U7) > 3, then by Lemma 4, we have a(U]UAU{wvp}) > 7, and hence a(U7) < 2. By
Lemma 9, G[U] U {u}] contains a hamiltonian path, which implies that G[U;] contains
a path of order at least m — k. By Claim 5, this is a contradiction. 1

By Claim 2, Uy N Vi = (. By Lemma 2, N(vg) NUs = 0. If k = 4, then Uy # ()
by Claim 6. By Lemma 5 and Claim 1, F(Us, A) = (. Thus, by Lemma 4, we have
a(Us U AU {ug,v}) > 7, a contradiction. If k = 3, then Uy # () By Claim 6. By
Lemma 5 and Claim 3, E(Us, A) = (). By Claim 4, Us is a clique. If G[U;] contains
an isolated vertex, say v’ € U; and dy, (u') = 0, then by (1) and the choice of ug, we
have dy,(u') > m — 4, which implies that Us is a clique of order at least m — 4. By
Claim 6, N(u) N Uy # @ for any v € Uy. Thus, noting that dy,(u') > m —4 > 3,
it is easy to see that H contains a (ug,u)-path of order m — 1 for any u € U;. This
implies that E(Uy, A) = 0 for otherwise G contains a C, 1. If a(Uy) > 3, then by
Lemmas 2 and 4, we have a(Uy U AU {wp}) > 7, a contradiction. Hence, a(U;y) < 2. If
G[U1] contains no isolated vertices, then by Lemmas 2, 5 and Claim 3, {u,vp} U A is an
independent set for any v € Uy, which implies that «(U;) < 2. Thus we have a(U;) < 2
in both cases. If G[U;] is connected, then by Lemma 9, G[U;] contains a hamiltonian
path, which contradicts Claim 5. Thus, we may assume that G[U;] = K, U K,, where
p+q>m—3. If p4+q+ |Us] > m, then by Claims 4 and 6, it is easy to see
that G contains a Cy,4+1. Hence we have p + g + |Uz| < m — 1, which implies that
p+q < m—2and |Uy] <2 If|Up =1, then for any u € K,, by (1) we have
m < d(u) < de(u) +p+ |Uz2] <34 [(m —2)/2] + 1, which implies that m < 6, a
contradiction. Therefore, we have |Uz| = 2 and p + ¢ = m — 3. For any u € K, by
(1) we have m < d(u) < 3+ 2+ [(m — 3)/2], which implies that m = 7, p = 2 and
Uy € N(u). In this case, u and ug are (2,5)-connected in H. By Lemma 6, No(u) = 0,
which implies that d(u) < 4, a contradiction. Therefore, we may assume that k = 2. If
a(G[Uq1]) > 3 and a(G[V1]) > 3, then by Lemma 2, we see that a(U; UVy U {z2}) > 7,

10



a contradiction. Thus we have a(G[U1]) < 2 or a(G[V1]) < 2. If a(G[U1]) < 2, then
by Lemma 9, either G[U;] has a hamiltonian path or G[U;] is the disjoint union of two
complete graphs. Thus, we have o(Us U A U {ugp,v0}) > 7 by Lemmas 4 and 7 in the
former case and «(Us U {ug,vg,az2}) > 7 by Lemmas 2, 4 and 8 in the latter case. If
a(G[V1]) < 2, then by Lemma 9, either G[V;] has a hamiltonian path or G[Vi] is the
disjoint union of two complete graphs. Thus, we have a(Vo U A U {ug,vp}) > 7 by
Lemmas 4 and 7 in the former case and «(Va U {ug,vp,a1}) > 7 by Lemmas 2, 4 and 8
in the latter case.

Case 2. min{|[;| | 1 <i <k} >2.

In this case, we still let vg € Ny (aj) and V; = {v | v € V(H) and dg(vo,v) = 2}
fori=1,2.

If k = 4, then by Claim 1, we have aj € Ng(v) for 1 < i < 4. Obviously,
C' = uoxgﬁafvoa;ﬁxluo is a C,. By the choice of C and ug, we have {2, 23,24} Z
N(a1), which implies that there is some x; with 2 <4 < 4 such that dg(x;) > 2. Let
wo € Ng(z;) — {up}. By the choice of ugy, we have wy # vg. Thus, by Lemmas 3 and

4, we see that {ug, v, wp} U A is an independent set of size 7, a contradiction.

Let k=3. If NH(a;“)ﬁNH(a;r) = for 1 <i<j<3, then by Lemmas 3 and 4, we
have a(G) > 7, a contradiction. Hence we may assume without loss of generality that
vg € Ng(ag) N Ny(a3). Obviously, ¢’ = uOl'g(éa;—an;_ﬁxguO is a Cy,. By the choice
of C and g, we have x2,a3 ¢ N(a3) and x3,a] ¢ N(az). Thus we have dy(a;) > 2
and dy(x;) > 2 for i = 2,3. Let v, € Ny(a3) — {vo}, then vovfy ¢ E(G) by Lemma
3. Let y € Ny(ay) — {vo}. If y # v}, then by Lemmas 3 and 4, {uo,y,vo,vj} U A
is an independent set of size 7, and hence y = vj). Let z € Ny(aj). If z ¢ {vo,v)},
then by Lemmas 3 and 4, {uo, z, v, v} U A is an independent set of size 7, and hence
we may assume that z = vg. In this case, C” = uon(aafvoa;ﬁxluo is a C),. By
the choice of C' and wg, we have ajag ¢ F(G), which implies that dy(a3) > 3. Let
v € Ny (ad)—{vo,vf}, then by Lemmas 3 and 4, {ug, vo, vj, v} UA is an independent
set of size 7, a contradiction.

Let k = 2. If Ny(af) N Ny(a3) # 0, we assume that vy € Ny (al) N Ng(ag) and

|I| < |I2|. In this case, C' = uoxgﬁafvoagaxluo is a C,,. By the choice of C' and
ug, we have

Ne(a;) = Nei(ai) = {xi,a} for i = 1,2. (6)

Since m > 7, we have |I5| > 3, which implies that af? # z;. If bjag? € E(G), then
UOJ'Qﬁa;UOGfﬁbla;Qﬁ.fluo is a Cp,y1, a contradiction. Hence we have blaf ¢ E(G).
By (1) and (6), we have dy(ag) > 2. Assume v € Ny(aj) — {vo}. By Lemma 3,
vovh ¢ E(G). By Lemma 1, vy, vy ¢ N(ag?). If [I;] > 3, then by the choice of C' and
g, we have v, vy ¢ N(b). Thus, by Lemmas 1, 4 and (6), {uo, vo, v}, b1, a3} U A is
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an independent set of size 7, a contradiction. Hence we may assume that |I;| = 2. Let
Ny (z2) —{up} = Z. By (1) and (6), Z # (. By the choice of ug, we have Nz(a1) = 0.
By Lemma 1, Nz(az) = (. By Lemmas 2 and 3, Nz(ug) = Nz(vg) = Nz(v)) = 0.
If a(Z) > 2 or there is some vertex z € Z such that zaj? ¢ E(G), then we have
(AU Z U {ug,vo,vh}) > 7 or a(AU {ug,vo, v,z a3°}) > 7, a contradiction. Hence
we may assume that Z is a clique and Z C N (a2+2). Thus, by Lemma 2, we have
|Z| < 2. Let 21 € Z. If 29af € E(G), then voa;xgzlafﬁblvg is a C11, and hence
zoaf ¢ E(G). By Lemma 1, 29a32 ¢ E(G). By (6), ajzo ¢ E(G). Thus we have
a1,a3,a3? ¢ No(z). By (1), we have |Z| > 3, which contradicts |Z| < 2. Hence, we
may assume that Ny (a]) N Ny(ad) = 0.

Let Ny (aj) = Z; for i = 1,2. If a(Z1) > 2 and «(Zs) > 2, then by Lemmas 3 and
4, we have a(Z1UZs UAU{up}) > 7, a contradiction. Thus, either Z; or Zs is a clique.
Assume without loss of generality that Zs is a clique. We now show that H contains no
(up, vo)-paths of order [ with [ = 3 or 4. If not, we have |Z3| < m — 5 for otherwise G
contains a Cy,11. Let | Za| = t. Since | < 4, we have [+t—1 < m—2, which implies that

a;(Ht—l) € agﬁxg. Since Z3 is a clique of order ¢, by Lemma 2, we have v ¢ N (aj) for
each v € a;lﬁa;(lﬂ_l), and hence d(aj ) < m — 1, which contradicts (1). This implies

that U3NVy = 0 and E(Uy, Vi) = 0. If «(Uy) > 3 and a(V4) > 3, then by Lemmas 2 and
3, we have a(U1 UViU{af}) > 7, and hence either a(U;) < 2 or a(V;) < 2. If G[Uy] or
G[V1] has a hamiltonian path, then by Lemmas 4 and 7, we have o(UsUAU{ug, v0}) > 7
or a(Va U AU {ug,v0}) > 7, a contradiction. Thus, by Lemma 9, either G[U;] or G[V1]
is the disjoint union of two complete graphs. Suppose G[Ui] is the disjoint union of
two complete graphs. If |Ip| > 3, then vgag? ¢ E(G) by Lemma 1 and Ny, (a3?) =
by Lemma 2. Thus, by Lemma 8, we have a(Us U {UO,Uo,(I;z}) > 7. If |I| = 2, then
we have |I;] > 3 since m > 7. If af? # b;? or af? = b7? and af?vy ¢ E(G), then
since do(vp) < 2, by Lemmas 2 and 8, we see that either a(Us U {uo,vg,a}L2}) >7
or a(Us U {ug,v0,b7%}) > 7. If af® = by and af?vy € FE(G), then |I;] = 5 and
hence m = 9. If N(by) N Us # 0, we let z € Ny,(b1) and uoyz is a P3 in H — {vp}.
Thus, uoyzblb;bfzvga;agmuo is a Cp41, and hence N(by) NUy = 0. Thus, by Lemma
8, we have a(Us U {ug,v0,b1}) > 7, a contradiction. Now, assume that G[V;] is the
disjoint union of two complete graphs. If vgb; ¢ E(G), then by Lemmas 3 and 8,
we have a(Va U {ug,v0,b1}) > 7. Hence we may assume that bjvg € E(G). Since
ajvo ¢ E(G), we have |I1| > 3. By the choice of ug, we have |I| = 2. In this case,
af = ag*. By Lemma 2, N(ag*) NVy = . Since |I;| > 3, we have ag* = af # by,
which implies that af*vg ¢ E(G) since do(vo) < 2. Thus, by Lemmas 2 and 8, we have
a(Va U {ug,vo,a3*}) > 7, a contradiction.

Up to now, we have shown that R(C,,, K7) < 6m — 5. On the other hand, since
6K,,—1 contains no Cy, and its complement contains no K7, we have R(C),, K7) >
6m — 5, and hence R(C,,, K7) = 6m — 5. 1
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3. Proof of Theorem 6
To prove Theorem 6, we need the following lemmas in addition to Theorem 5.
Lemma 11 (Ore [7]). Let G be a graph of order n. If 03(G) > n, then G is hamiltonian.
The following lemma can be deduced from the known Ramsey numbers, see [8].
Lemma 12. R(Bs, K7) < 34.

Lemma 13. Let G be a graph of order 7m — 6 (m > 7) with a(G) < 7. If G contains
no Cp,, then §(G) > m — 1.

Proof. If there is some vertex v such that d(v) < m —2, then G’ = G — N|[v] is a graph
of order at least 6m — 5. Since R(C),, K7) = 6m — 5 for m > 7 by Theorem 5 and G’
contains no C,,, we have o(G’) > 7. Thus, an independent set of order at least 7 in
G’ together with v form an independent set of order at least 8 in G, which contradicts

al(G) < 7. 1

Lemma 14. Let G be a graph of order 7m — 6 (m > 7) with «(G) < 7. If G contains
no C,,, then G contains no W, _o.

Proof. Suppose to the contrary that G contains a W,,_o = {wo} + C, where C =
wy -+ Wpy—2 is a cycle of length m — 2. Set U = V(G) — V(W,,—2). By Lemma 13,
d(G) > m — 1. Thus we have Ny(w;) # 0 for 0 < i < m — 2. Let v; € Ny(w;) and
Vi = Nylvi], where 0 < i < m — 2. Since G contains no C,,, we have

NWVi) N Wy—g = {w;} for 0 <i<m —2, (7)

VinVi=0for0<i<j<m-—2, (8)
and

EWVo,Vi)=0for 1 <i<m—2. (9)

By (7), we have dy,, ,(v;) = 1, which implies that |V;| > m —1 for 0 < ¢ < m — 2 since
5(G) > m—1. By (8), we have m(m —1) < |[W,,,_oU(U,?V;)| < 7m —6, which implies
that m <7, and hence m = 7. In this case, |G| = 43. Thus by (8) we have 6 < |V;| <7
for 0 < i < 5. If there is some V; such that |V;| = 7, then V(G) = V/(W5) U (U3_,Vi).
By (7) and (9), we have N (V) C Vo U {wo}. If |Vp| = 7, then since §(G) > 6, we have
d(G[Vo]) > 5. By Lemma 11, G[Vp] contains a C7, a contradiction. If |Vj| = 6, then
G[Vo U {wp}] = K7 since §(G) > 6, also a contradiction. If |V;| = 6 for 0 < ¢ < 5, then
V(G) — (V(W5)U (U V;)) contains exactly one vertex, say y. By (7) and (9), we have
N(Vp) € VyU{wo,y}. Noting that 6(G) > 6, we have dy;, (wo) > 3 or dy;, (y) > 3, which
implies that that either G' = G[Vy U {wo}] or G” = G[Vy U {y}] is a graph of order 7
with minimum degree at least 3 and has at most one vertex of degree 3. By Lemma
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11, either G’ or G” contains a C7, again a contradiction. 1

Proof of Theorem 6. Let G be a graph of order 43. Suppose to the contrary that
neither G' contains a C7 nor G contains a Kg. By Lemma 13, we have §(G) > 6.

Before starting to prove Theorem 6, we first establish the following claims.
Claim 7. G contains no Ki + Ps.

Proof. Suppose that G contains K; + Ps, say, P = v ---v5 and V(P) C N(vg). Let
U=V(G)—{vi| 0<i<5}and Ny(v;) = U; for 0 <1i <5. Because of §(G) > 6, we
have U; # () for 0 < i < 5.

If UsNUy # 0, then we let vg € UsNUy, X ={v; |0<i <6} and Y =V (G) — X.
Set Y; = Ny (v;), z; € Y; and Z; = Ny(z) for 0 < i < 6. If vsvg € E(G), then G
contains a C7. By Lemma 14, vjvs ¢ E(G). Thus, noting that |X| =7 and 6(G) > 6,
we have Y; # 0 for ¢ = 1,3,5,6. Since G contains no C7, it is easy to check that
Y;NY; =0 fori=1,3,5,6 and j # ¢, and E(Y;,Y;) =0 for i,j € {1,3,5,6} and i # j.
Thus we have |Z;| > 5 for ¢ = 1,3,5,6. For the same reason, we have Z; N Z; = () and
E(Z;, Z;) = 0 for i,j € {1,3,5,6} and ¢ # j. By Lemma 14, we have a(Z;) > 2 for
i=1,3,5,6. Thus we have a(Z; U Z3 U Z5 U Zg) > 8, a contradiction. Hence we have
Us,NUs = 0.

HUNUs # 0, welet vg € UgNUyy, X = {v; |0<i<6}and Y = V(G) — X.
Set Y; = Ny(v;), 2; € Y; and Z; = Ny (z;) for 0 < i < 6. Since Uy NUy = ), we
have YoNYy = 0. If YoNYy = ), then since G contains no C7, it is easy to see that
Y;iNnY; =0 fori=1,2,56 and j # ¢, which implies that |Z;| > 5 for ¢ = 1,2,5,6. By
Lemma 14, o(Z;) > 2 for i =1,2,5,6. Since G contains no C7, we have Z;NZ; = () and
E(Z;, Zj) =0 fori,j € {1,2,5,6} and 7 # j. Thus, we have a(Z,UZyUZ5U Zg) > 8, a
contradiction. Hence, we may assume Yo NYy # 0, say v € YaNY). Let X' = X U{v7}
and Y = V(G) — X'. Set Y/ = Ny/(v;), 2, € Y/ and Ny:(z]) = Z] for 0 < i < 7.
Since G contains no C7, {v1,vs,v6,v7} is an independent set. Thus we have Y] # {)
for i = 1,5,6,7. In this case, it is easy to see that ¥/ NY/ = ) for i = 1,5,6,7 and
Jj # i since otherwise G contains a C7. This implies that |Z]| > 5 for i = 1,5,6,7. By
Lemma 14, a(Z;) > 2. Since G contains no C7, we have Z; N Z; = () and E(Z;, Z}) =0
for 4,5 € {1,5,6,7} and i # j, which implies that «(Z] U ZL U Z; U ZL) > 8, again a
contradiction. Thus we have Uy N Uy = (). By the symmetry of Uy and Uy, we have
Uy N Uy = (). Therefore, Uy N (Uy U Uy) = 0.

Since G contains no C7, we have U; N U; = () for i = 1,5 and j # 4, and Uz N (U2 U
Us) = 0. Thus, noting that Us N Uy = Uy N (U2 U Us) = 0, we have U; NU; = 0 for
i€{1,2,4,5} and j # i. Let u; € U; and V; = Ny(u;) for i = 1,2,4,5, then we have
|Vi| > 5. By Lemma 14, «(V;) > 2. Since G contains no C7, we see that Vi, Vs, Vy and
V5 are pairwise disjoint and there are no edges between any two of them. Thus we have
a(V1UVoUV,UVs) > 8, a contradiction. |
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Claim 8. G contains no Wy .

Proof. Suppose that G contains a Wy, say, C = vy ---vs and Wy~ = {vg} +C — {vouv1 }.
Let U =V(G) —{v; | 0 <1i <5} and U; = Ny(v;) for 0 <14 < 5. Since §(G) > 6, we
have U; # (). Noting that G contains no C7, we have U; N U; = 0 for i € {0,1,3,4}
and j # i, and E(U;,U;) = 0 for i,j € {0,1,3,4} and ¢ # j. Take u; € U; and set
Vi = Ny(w;) for i = 0,1,3,4, then we have |V;| > 5. By Lemma 14, o(V;) > 2 for
i = 0,1,3,4. Since G contains no C7, we have V; NV; = 0 and E(V;,V;) = 0 for
i,7 €{0,1,3,4} and i # j, which implies that a(VoUV; UV3UVy) > 8, a contradiction.
1

Claim 9. G contains no Wy.

Proof. Suppose that G contains a Wy, say C' = vy ---vy is a cycle and V(C) C N(vp).
Let U = V(G) — {v; | 0 < i < 4} and set U; = Ny(v;) for 0 < ¢ < 4. By Claim 7,
UoﬂUi:(beI" 1<i<4. By Claim 8, UiNUs =UsNUs =UsNUL =UsNU =0. If
Ui NU;z # (0, then Uy N Uy = () for otherwise avyvgvabvgvs is a C7, where a € Uy N Us
and b € Uy N Uy. By symmetry, we may assume that Uy N Uz = (. Let u; € U;
for 0 < i < 4. Since 6(G) > 6, we have |U;] > 2. Thus we can choose uy such
that ug # wug. Set V; = Ny(u;) for i = 0,1,3. By the arguments above, we have
|Vi| > 5 for i = 0,1,3. By Lemma 14, «(V;) > 2 for ¢ = 0,1,3. Since G contains no
C7, we have uguy ¢ E(G) and ug,uq ¢ Vo U Vi U V3. For the same reason, we have
E({ug,us}, VoUV1UV3) =0, V;NV; = B and E(V;,V;) =0 for i,j € {0,1,3} and i # 7,
which implies that a({ug,us} U VyU V3 UV3) > 8, a contradiction. 1

Claim 10. G contains no Kj.

Proof. Suppose that G contains a K4, say S = {v1,v2,v3,v4} is a clique. Set U =
V(G) — S and U; = Ny (v;) for 1 <1i < 4. Since §(G) > 6, we have |U;| > 3.

If there are U; and U; with ¢ # j such that U; NU; # (), we assume without loss
of generality that vs € UsNUy. Let X = SU{vs}, Y = V(G) — X and Y; = Ny (v;)
for 1 < i < 5. By Claim 7, we have (Y3 UY;) N (Y1 UY,UY;5) = 0. By Claim 8,
Y5N(Y1UY2) = 0. Since G contains no Cr, we have E(Y;,Y;) = 0 for4,j € {1,2,3,5} and
j #i. Let z; € Y; and Z; = Ny (z;) for i = 1,2,3,5. Since §(G) > 6, we may choose u;
such that u; # ug. By the arguments above, we have | Z;| > 4 for i = 1,2, 3,5. By Claim
9, a(Z;) > 2. Because G contains no C7, we see that Z; N Z; = () and E(Z;, Z;) = () for
i,7 €{1,2,3,5} and i # j, which implies that a(Z1UZsUZ3U Z5) > 8, a contradiction.
Hence we have U; NU; =0 for 1 <i < j <4.

Take u; € U; for 1 < i <4. Set T = {uy,ug,uz,us}, U =U — T and Ny/(u;) =V;
for 1 <¢ < 4. If A(G[T]) > 2, then G contains a C7, and hence we may assume that
A(G|T)) < 1. Thus, noting that U; NU; = 0 for 1 < i < j < 4, we have |V;| > 4
for 1 <i < 4. By Claim 9, «(V;) > 2. Since G contains no C7, it is easy to see that
V;NV;=0and E(V;,V;) =0 for 1 <i < j <4, which implies that a(U}_,V;) > 8, a
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contradiction. |
Claim 11. G contains no Kq + Pj.

Proof. Suppose that G contains K+ Py, say P = vjvavsvy is a path and V(P) C N(vp).
Set S={v; |0<i<4}, U=V(G)— S and U; = Ny(v;) for 0 <i < 4.

If UsNUy # 0, we let v5 € UsNUy. Set X = SU{v5}, Y = V(G)—X and Y; = Ny (v;)
for 0 < i < 5. Since G contains no C7, we have Y1 NY; =0 fori # 1, YonNY; = () for
i #0,2and YyNY; =0 for i # 3,4. For the same reason, we have E(Y;,Y;) = 0 for
i,7 € {1,2,4} and i # j. Let z; € Y; and Z; = Ny (z;) for i = 1,2,4. By the arguments
above, we have |Z1| > 5 and |Z;| > 4 for i = 2,4. Note that G contains no C7, we see
that E({vs}, Z1UZ2UZ4) =0, Z1, Z5 and Z, are pairwise disjoint and there is no edges
between any two of them. By Claims 7, 9 and 10, we have a(Z;) > 3 and a(Z;) > 2
for i = 2,4, which implies that a({vs} U Z; U Z3 U Zy) > 8, a contradiction. Hence we
have U3 N Uy = (. By symmetry, U; N Uy = (). Thus we have Uy NUs = U3 N Uy = 0.

HUNU;y # 0, we let v5 € UpNUy. Set X = SU{vs5}, Y = V(G) — X and
Y; = Ny(v;) for 0 <@ < 5. Since G contains no C7, we have ¥; NY; = 0 for i = 1,5
and j #i. Let z; € Y; and Z; = Ny (z;) for ¢ = 1,5, then by the arguments above, we
have |Z;| > 5 for i = 1,5. By Claims 7, 9 and 10, we have «(Z;) > 3 for i = 1,5. By
Claim 10, vovy ¢ E(G) If Z1NZs # @ or E(Zl,Z5) #* @ or E({Ug,v4},Z1 U Z5) #* @,
then G contains a C7, a contradiction. Thus we have a({ve,v4} U Z; U Z5) > 8, a
contradiction. Hence we have Uy N Uy = (). By symmetry, U; N Uz = (). Thus we have
UrNUs =U,NUs = 0.

By the arguments above, we have (U3 U Uys) N (U UUs) = (. By Claim 7, Uy N
(U1 UUy) = 0. By Claim 8, Uy N Uy = (0. Thus, we have U; NU; = () for i = 1,4 and
j #i. Let u; € U; for 1 < i < 4. Since §(G) > 6, we may choose uz,us such that
ug # us. Set V; = Ny(u;) for i = 1,4, then we have |V;| > 5 for i = 1,4. By Claims 7,
9 and 10, we have «(V;) > 3 for i = 1,4. If ugus € E(G) or {ug,us} N (V1 UVy) # 0 or
E({ug,us}, V1UVy) # 0, then G contains a C7, a contradiction. For the same reason, we
have V1 NV, = 0 and E(V1,Vy) = 0, which implies that that a({uz,us} UV; UVy) > 8,
a contradiction. |

Claim 12. G contains no Bs.

Proof. Assume that G contains a Bz, say, viva € E(G) and vs,va, vs € N(v1) N N(v2).
Set U:V(G)—{Ui | 1§Z§5} andUi:NU(vi) f0r1§i§5.

I UsNUy # 0, we assume vg € UsNUy. Set X ={v; | 1<i<6}, Y =V(G)-X
and Y; = Ny (v;) for 1 < i < 6. Since G contains no C7, we see that Y5 NY; = () for
i#5and Y;NY; =0 for i = 3,4 and j # 3,4. Thus we can take z; € Y; for 3 <7 <5
such that z3 # z4. Note that G contains no C7, zz; ¢ E(G) for 3 < i < j < 5.
Set Z; = Ny(z;) for 3 < i < 5. By the arguments above, we have |Z5] > 5 and
|Zi| > 4 for i = 3,4. By Claims 7, 9 and 10, we have a(Z5) > 3 and a(Z;) > 2 for
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i=3,4. If E({vg},U>_37Z;) # (), then G contains a C7, a contradiction. For the same
reason, we have Z; N Z; = 0 and E(Z;, Z;) = 0 for 3 < i < j < 5. Thus we get that
a({ve} U (UL_3Z;)) > 8, a contradiction. Hence we have U3 N Uy = ). By symmetry, we
have U;NU; =0 for 3 <i < j <5.

By Claim 11, we have (U; UUs) N (UsUU4UUs) = ), which implies that U; NU; = ()
fori =3,4,5and j # 4. Let u; € U; and Ny (u;) =V for i = 3,4, 5. Since §(G) > 6, by
the arguments above, we have |V;| > 5 for i = 3,4,5. By Claims 7, 9 and 10, we have
a(V;) > 3. Thus, noting that G contains no C7, we have V;NV; =0 and E(V;,V;) =0
for 3 <i < j <5, which implies that a(U}_3V;) > 9, a contradiction. 1

Claim 13. G contains no W, .

Proof. Suppose G contains a W, , say, W, = {vs} + C — {vivs}, where C = vjvav3vs
isa cycle. Set S={v; | 1<i<5},U=V(G)— S and U; = Ny(v;) for 1 <i <5.

If U1NUs # 0, we let vg € UyNU5. Set X = SU{wvs}, Y = V(G)—X and Y; = Ny (v;)
for 1 <4 < 6. Since G contains no C7, we have E(Yy,Ys) = 0 and Y; NY; = 0 for
i=4,6 and j #i. Let z; € Y; and Z; = Ny (z;) for i = 4,6. By the arguments above,
we have |Z;| > 5. By Claims 7, 9 and 10, we have «(Z;) > 3 for i = 4,6. Because G
contains no C7, we have ZyNZg = (), E(Z4, Zg) = ) and E({v1,v5}, Z4U Zg) = (), which
implies that a({vi,v5} U Z4U Zg) > 8, a contradiction. Thus we have Uy NUs = 0. By
the symmetry of Us and Us, we have Uy N Us = (), and hence Uy N (Us U Us) = 0.

IfUINUs # 0, we let vg € UiNUy. Set X = SU{vg}, Y = V(G)—X and Y; = Ny (v;)
for 1 <4 < 6. Since G contains no C7, we have F(Y3,Ys) = ) and YsNY; = 0 for i # 6.
By Claim 11, Y3 N (Y UYs) = 0. By Claim 12, ;N Ys = 0. If Y31 Y # 0, then G
contains a C7, a contradiction. Thus we have Y3NY; = () for ¢ # 3. Let z; € Y; and
Z; = Ny (z;) for i = 3,6, then by the arguments above, we have |Z;| > 5. By Claims 7,
9 and 10, we have a(Z;) > 3 for i = 3,6. By Claim 10, vovs ¢ E(G). Thus, noting that
G contains no C7, we have Z3 N Zg = 0, E(Z3, Zs) = () and E({ve,v4}, Z3 U Zg) = 0,
which implies that «({ve, v4}UZ3UZg) > 8, a contradiction. Thus we have Uy NUy = ().
By the symmetry of Uy and Uy, we have Uy N U = (), and hence Uy N (Uz U Uy) = 0.

By the arguments above, Uy NU; = 0 for i # 1. By Claim 11, Us N (Uy U Uy) = 0.
By Claim 12, U3 N Us = (). Thus we have U3 N U; = () for i # 3. Let u; € U; and
Vi = Ny (w;) for i = 1,3, then by the arguments above, we have |V;| > 5. By Claims 7,
9 and 10, we have a(V;) > 3 for i = 1,3. By Claim 10, vavs ¢ E(G). Thus, noting that
G contains no C7, we have V1 NV3 = 0, E(V1,V3) = 0 and E({ve,v4}, V4 UV3) = 0,
which implies that a({ve,vs} U Vi UV3) > 8, a contradiction. 1

Claim 14. G contains no Bs.

Proof. Suppose to the contrary that GG contains a Bs, say, v1vov3vy is a cycle with
diagonal vavy. Set U = V(G) — {v1,v2,v3,v4} and U; = Ny (v;) for 1 <i < 4.
If E(Uy,Us) # 0, we assume vs € Uy, v € Us and vsvg € F(G). Let X ={v; | 1 <
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i <6}, Y =V(G)— X and Y; = Ny(v;) for 1 < i < 6. Since G contains no Cr, it
is easy to get that ; NY; = 0 for i = 2,4 and j # ¢, and Y5 N (Y1 UYs) = 0. Let
zi € Yy for i = 2,4,5, Zo = Ny(2z2) — {24}, Z4 = Ny(24) — {22} and Z5 = Ny (z;).
Then by the arguments above, we have |Z;| > 4 for i = 2,4,5. By Claims 7, 9 and
10, we have a(Z;) > 2 for i = 2,4,5. Noting that G contains no C7, we see that
E({v1,v3}, ZoUZy U Zs) =0, (Z2U Zy) N Zs = ) and there is no edge between any two
of the three Z5, Zy and Zs. By Claim 10, vivs ¢ E(G). If Zo N Zy = (), then by the
arguments above, we have a({vi,v3} U Z2 U Zy U Z5) > 8, and hence we may assume
that Zo N Zy # 0. Since E(Zy, Zy) = (), we see that Zs N Z4 is an independent set. If
|Zo N Z4| > 4, then a({vi,v3} U (Z2N Zs) U Zs) > 8, and hence we may assume that
|ZoNZ4| < 3. In this case, we have Z) = Zo—(ZaNZy) # 0 and Z) = Zy—(ZaNZy) # 0.
If |ZoaN Z4| > 2, then noting that F(Zs, Zy) = (), we have a(Z2U Zy) > 4, which implies
that a({v1,v3} U (Z2 U Z4) U Z5) > 8, a contradiction. If |Zo N Z4| = 1, then we have
|Z!l] > 3 for i = 2,4. By Claim 10, a(Z]) > 2 for i = 2,4. Obviously, Z5 N Z} = 0.
Thus we have a({vi,v3} U Zy U Zj U Z5) > 8, again a contradiction. Hence we have
E(Uy,Us) = 0.

If E(Uy UUs, Uy UUy) # 0, we assume without loss of generality that vs € Us,
ve € Ug and vsv € E(G). Let X ={v; | 1 <i<6},Y =V(G) — X and Y; = Ny (v;)
for 1 < i < 6. Since G contains no C7, we have Y1 NY; =0 fori # 1, YsN (YoUY5) =0
and Ys N (YUY, UY5) = (. By Claim 11, Y3NY; = 0. Let 2; € Y; and Z; = Ny (2;) for
i=1,3,6. Since vzvg ¢ E(G) by Claim 11 and 6(G) > 6, we have |Y;| > 2 for ¢ = 3,6.
Thus we may choose z3 such that z3 # z¢. By the arguments above, we have |Z1]| > 5
and |Z;| > 4 for i = 3,6. By Claims 7, 9 and 10, we have a(Z;) > 3 and «a(Z;) > 2 for
i = 3,6. Noting that G contains no C7, we see that E({vs}, Z1UZ3UZg) =0, Z1, Z3, Zs
are pairwise disjoint and there is no edge between any two of them. This implies that
a({vs} U Z1 U Z3U Zg) > 8, a contradiction. Hence we have E(Uy U Us, Uy U Uy) = 0.

By Claims 11, 12 and 13, we have U; NU; = () for 1 < i < j < 4. Let u; € U; and
Vi = Ny(u;) for 1 < i < 3. Obviously, |V;| > 5 for 1 <14 < 3. Since G contains no C7,
E(U1,U3) =0 and E(Uy UU3, Uz UUy) =0, we have V;NV; =0 and E(V;,V;) =0 for
1 <i<j<3. By Claims 7, 9 and 10, we have «(V;) > 3 for 1 <4 < 3, which implies
that a(U3_,V;) > 9, again a contradiction. 1

We now begin to prove Theorem 6.

If there is some vertex v such that d(v) < 8, then G’ = G — N[v] is a graph of
order at least 34. By Lemma 12 and Claim 14, we have «(G’) > 7, which implies that
a(G) > 8, a contradiction. Hence we have §(G) > 9.

Let vo € V(G). Since d(vg) > 9, G[N(vg)] contains at least two edges for otherwise
we have a(N(vg)) > 8. By Claim 14, G[N(vp)] contains no P3. Thus, G[N(vg)] contains
two independent edges, say v1ve, v3v4 € E(G[N(vg)]). Set U =V (G) —{v; | 0 <i <4}
and Ny (vi) = U; for 1 < i < 4. By Claim 11, we have E({vi,v2}, {vs,v4}) = 0, which
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implies that |U;| > 7 for 1 < i < 4. By Claim 14, we have o(U;) > 4 for 1 < i < 4.
Since G contains no C7, we have E(U; U Uy, U3 U Uy) = (. Thus, if Uy NUs = 0 or
Uy NUy; = 0, then we have o(Uy U Us) > 8 or a(Us U Uy) > 8, and hence we may
assume a € Uy NU;z and b € Us N Uy. By Claim 14, we have a # b, which implies that
av1vgvabugvs is a C7 in GG, a contradiction.

By the arguments above, we have R(C7, Kg) < 43. On the other hand, since 7Kg
contains no C7 and its complement contains no Kg, we have R(C7, Kg) > 43 and hence
R(C7, Kg) = 43. 1
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