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Abstract: For two given graphs G1 and G2, the Ramsey number R(G1, G2)
is the smallest integer n such that for any graph G of order n, either G

contains G1 or the complement of G contains G2. Let Cm denote a cycle
of length m and Kn a complete graph of order n. In this paper we show
that R(Cm,K7) = 6m− 5 for m ≥ 7 and R(C7,K8) = 43, with the former
result confirms a conjecture due to Erdös, Faudree, Rousseau and Schelp
that R(Cm,Kn) = (m− 1)(n− 1) + 1 for m ≥ n ≥ 3 and (m,n) 6= (3, 3) in
the case where n = 7.
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1. Introduction

All graphs considered in this paper are finite simple graphs without loops. For two
given graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest integer n such
that for any graph G of order n, either G contains G1 or G contains G2, where G

is the complement of G. The neighborhood N(v) of a vertex v is the set of vertices
adjacent to v in G and N [v] = N(v) ∪ {v}. The minimum degree of G is denoted by
δ(G). Let V1, V2 ⊆ V (G). We use E(V1, V2) to denote the set of the edges between V1

and V2. The independence number of a graph G is denoted by α(G). For U ⊆ V (G),
we write α(U) for α(G[U ]), where G[U ] is the subgraph induced by U in G. Define
σ2(G) = min{d(u) + d(v) | u, v ∈ V (G) and uv /∈ E(G)}. A Wheel of order n + 1 is
Wn = K1 + Cn and W−

n is a graph obtained from Wn by deleting a spoke from Wn.
A Book Bn = K2 + Kn is a graph of order n + 2. A cycle and a path of order n are
denoted by Cn and Pn, respectively. We use mKn to denote the union of m vertex
disjoint Kn. Let u, v ∈ V (G) and s ≤ t be integers. If G contains a (u, v)-path of order
l for each l with s ≤ l ≤ t, then we say u and v are (s, t)-connected in G. Let C be a
cycle. We denote by −→C the cycle C with a given orientation, and by ←−C the cycle C

with the reverse orientation. If u, v ∈ V (C), then u
−→
C v denotes the consecutive vertices
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of C from u to v in the direction specified by −→C . The same vertices, in reverse order,
are given by v

←−
C u. If u = v, then u

−→
C v = {u}. We will consider u

−→
C v and v

←−
C u both as

paths and vertex sets. We use u+t and u−t to denote the tth successor and predecessor
of u, respectively. For convenience, we write u+1 = u+ and u−1 = u−. For notations
not defined here, we follow [2].

The cycle-complete graph Ramsey number R(Cm,Kn) was first studied by Erdös
et al. in [5]. In their paper, they asked the following question.

Question 1 (Erdös et al. [5]). For a given n, what is the smallest value of m such that
R(Cm,Kn) = (m− 1)(n− 1) + 1?

Furthermore, they posed the following conjecture.

Conjecture 1 (Erdös et al. [5]). R(Cm,Kn) = (m− 1)(n− 1) + 1 for m ≥ n ≥ 3 and
(m,n) 6= (3, 3).

The conjecture was confirmed for n = 3 in early works due to Faudree et al. [6] and
Rosta [9]. Yang et al. proved the conjecture for n = 4.

Theorem 1 (Yang et al. [11]). R(Cm,K4) = 3m− 2 for m ≥ 4.

Bollobás et al. [1] showed that the conjecture is true for n = 5.

Theorem 2 (Bollobás et al. [1]). R(Cm,K5) = 4m− 3 for m ≥ 5.

Schiermeyer [10] confirmed the conjecture for n = 6.

Theorem 3 (Schiermeyer [10]). R(Cm,K6) = 5m− 4 for m ≥ 6.

In a recent paper, Cheng et al. [3] showed that the conjecture is true in the case when
m = n = 7, and obtained the following result.

Theorem 4 (Cheng et al. [3]). R(C7,K7) = 37.

For the case where m ≤ n − 1, only 13 exact values of R(Cn,Km), including 6
classical Ramsey numbers, are known, see Table 1. All the details in Table 1 can be
found in the survey [8].

In this paper our main results are the following:

Theorem 5. R(Cm,K7) = 6m− 5 for m ≥ 7.

Theorem 6. R(C7,K8) = 43.

Obviously, Theorem 5 shows that Conjecture 1 is true for n = 7. Let f(n) be the
smallest value of m such that R(Cm,Kn) = (m − 1)(n − 1) + 1 for a given n. By the
known results (see [8]), we have f(3) = 4, f(4) = 4, f(5) = 5, f(6) = 5 and f(7) = 5.
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Theorem 6 shows that f(8) ≤ 7.

K4 K5 K6 K7 K8 K9

C3 9 14 18 23 28 36

C4 14 18 22 26

C5 21 25

C6 31

Table 1. Known Ramsey Numbers R(Cm,Kn) for m ≤ n− 1

2. Proof of Theorem 5

In order to prove Theorem 5, we first establish some lemmas.

Let G be a graph, C a cycle of length m ≥ 7 in G and u ∈ V (H) = V (G)− V (C).
Set NC(u) = {x1, x2, . . . , xk}, where the indices follow the orientation of C; A =
{a1, a2, . . . , ak}, where ai = x+

i ; B = {b1, b2, . . . , bk}, where bi = x−i+1; and Ii = ai
−→
C bi,

the subscripts are taken module k. These notations will also be used in Section 3.

If G contains no Cm+1, then we have the following lemmas (1-8).

Lemma 1. Both {u} ∪A and {u} ∪B are independent sets, and u has no consecutive
neighbors in C.

Proof. If aiaj ∈ E(G) with i 6= j, then uxj
←−
C aiaj

−→
C xiu is a Cm+1, a contradiction. If

v, v+ ∈ NC(u), then uv+−→C vu is a Cm+1, again a contradiction.

Lemma 2. Let P be a (u1, u2)-path of order s ≥ 2 in H, v1, v2 ∈ V (C) and s −
|v+

1
−→
C v−2 | = t ≥ 1. If u1v1, u2v2 ∈ E(G), then t 6= 1. Furthermore, if t ≥ 2 and

w,w+t ∈ v2
−→
C v1, then ww+t /∈ E(G).

Proof. If t = 1, then u1
−→
P u2v2

−→
C v1u1 is a Cm+1, a contradiction. If t ≥ 2 and w,w+t ∈

v2
−→
C v1, then u1

−→
P u2v2

−→
C ww+t−→C v1u1 is a Cm+1, again a contradiction.

Lemma 3. Let v, w ∈ V (H) − {u}. If v ∈ N(a+
i ), w ∈ N(a+

j ) and i 6= j, then
vw /∈ E(G). Similarly, if v ∈ N(b−i ), w ∈ N(b−j ) and i 6= j, then vw /∈ E(G).

Proof. Otherwise, uxj
←−
C a+

i vwa+
j
−→
C xiu is a Cm+1, a contradiction. As for the latter

part, the proof is similar.
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Lemma 4. If v ∈ NH(a+
i ) and u 6= v, then {u, v}∪A is an independent set. Similarly,

if v ∈ NH(b−i ) and u 6= v, then {u, v} ∪B is an independent set.

Proof. By Lemma 2, uv /∈ E(G). By Lemma 1, aiv /∈ E(G). Let j 6= i and ajv ∈ E(G).
If |Ii| ≥ 2 or |Ii| = 1 and j 6= i + 1, then uxi

←−
C ajva+

i
−→
C xju is a Cm+1, a contradiction.

If |Ii| = 1 and j = i+1, then aj = a+2
i , which contradicts Lemma 1. Thus, noting that

{u} ∪ A is an independent set by Lemma 1, we see that {u, v} ∪ A is an independent
set. As for the latter part, the proof is similar.

Lemma 5. Let |Ii| ≥ 2, |Ii−1| = 1 and k ≥ 3. Suppose y ∈ V (H) and a+
j ∈ NC(y) for

all j with |Ij | ≥ 2. If uvw is a P3 in H − {y}, then {w} ∪A is an independent set.

Proof. By Lemma 2, wai /∈ E(G). If wai−1 ∈ E(G), then by Lemma 2, we have |Ii−2| ≥
2. Thus, uvwai−1

←−
C a+

i−2ya+
i
−→
C xi−2u is a Cm+1, a contradiction. Let j 6= i, i−1. Assume

waj ∈ E(G). If |Ij | ≥ 2, then uvwaj
←−
C a+

i ya+
j
−→
C xi−1u is a Cm+1, a contradiction. If

|Ij | = 1, then |Ij+1| ≥ 2 by Lemma 2. Thus, uvwaj
←−
C a+

i ya+
j+1
−→
C xiu is a Cm+1, again a

contradiction.

Lemma 6. Let v′, v ∈ V (H) and dC(v′) = l ≥ 1. If v′ and v are (3,m−l+1)-connected
in H, then NC(v) = ∅.

Proof. Let NC(v′) = {y1, y2, . . . , yl}, where the indices follow the orientation of C.
Suppose w ∈ NC(v). Choose yi such that p = min{|w−→C yi|, |yi

−→
C w|} is as large as

possible. Obviously, p ≤ m/2 + 1. Since G contains no Cm+1, we have l ≤ m/2. Thus
we have m− l + 1 ≥ p. If p ≥ 4, then by Lemma 2, H contains no (v′, v)-path of order
p− 1, which contradicts that v′ and v are (3,m− l + 1)-connected in H. Thus we may
assume p ≤ 3. In this case, we must have p ≥ l by the choice of yi. Thus, since v′ and
v are (3,m− l +1)-connected in H, H contains a (v′, v)-path of order m− p+1, which
implies that G contains a Cm+1, a contradiction.

Let k ≥ 1 and Zi = {v | v ∈ V (H) and dH(u, v) = i} for i = 1, 2. Suppose δ(G) ≥ m

and dC(h) ≤ 2 for each h ∈ V (H). We have the following two lemmas(7-8).

Lemma 7. If G[Z1] contains a hamiltonian path, then there are three vertices z1, z2, z3 ∈
Z2 such that NC(zi) = ∅ and {z1, z2, z3} is an independent set.

Proof. Let P = y1 · · · yp be a hamiltonian path in G[Z1] and Yi = NZ2(yi) for 1 ≤ i ≤ p.
Since G contains no Cm+1, δ(G) ≥ m ≥ 7 and dC(u) ≤ 2, we have 5 ≤ m − 2 ≤ p ≤
m− 1. Obviously, u and yi are (2,m− k + 1)-connected in H for i = 1, p. By Lemma
6, NC(yi) = ∅ for i = 1, p, which implies that Yi 6= ∅ for i = 1, p.

If p = m− 1, then y2 and u are (2,m− 1)-connected in H. If dC(y2) ≥ 2, then by
Lemma 6 we have k = 0, which contradicts k ≥ 1, and hence we have dC(y2) ≤ 1. If
Y2 = ∅, then since dH(y2) ≥ m − 1, we have y2yp ∈ E(G), which implies that u and
y3 are (2,m)-connected in H. By Lemma 6, NC(y3) = ∅, which implies that Y3 6= ∅.
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Take z1 ∈ Y1, z2 ∈ Y2 if Y2 6= ∅ and z2 ∈ Y3 if Y2 = ∅, and z3 ∈ Yp. If zi = zj or
zizj ∈ E(G) for some i, j ∈ {1, 2, 3} and i 6= j, then G contains a Cm+1, a contradiction.
Obviously, u and zi are (3,m)-connected in H for 1 ≤ i ≤ 3. By Lemma 6, NC(zi) = ∅
for 1 ≤ i ≤ 3. Thus, z1, z2 and z3 are the vertices as required.

If p = m − 2, then since δ(G) ≥ m and dC(u) ≤ 2, we have k = 2 and |Yi| ≥ 2
for i = 1, p. Since G contains no Cm+1, we have E(Yi, Yj) = ∅ for i ∈ {1, p} and
j 6= i. If |Y1 ∩ Yp| = 1 or |Y1 ∩ Yp| = 2 and |Y1 ∪ Yp| ≥ 3 or |Y1 ∩ Yp| ≥ 3, then
we have α(Y1 ∪ Yp) ≥ 3. Let {z1, z2, z3} ⊆ Y1 ∪ Yp be an independent set. Since u

and zi are (3,m)-connected in H, by Lemma 6, NC(zi) = ∅ for 1 ≤ i ≤ 3. Thus,
z1, z2 and z3 are the vertices as required. If |Y1 ∩ Yp| = |Y1 ∪ Yp| = 2, we assume that
Y1 = Yp = {z1, z2}. In this case, noting that y2y1z1yp

←−
P y4 and y2y1z1yp

←−
P y3 are (y2, u)-

paths of order m − 1 and m, respectively, we see that u and y2 are (2,m)-connected
in H. By the symmetry of y2 and yp−1, u and yp−1 are also (2,m)-connected in H.
Thus, by Lemma 6, we have NC(yi) = ∅ for i = 2, p− 1, which implies that |Yi| ≥ 2 for
i = 2, p−1. If Y2∪Yp−1 ⊆ {z1, z2}, then uy1z1y2

−→
P yp−1z2ypu is a Cm+1, a contradiction.

If Y2 ∪Yp−1 6⊆ {z1, z2}, say z3 ∈ Y2 ∪Yp−1−{z1, z2}, then z1, z2 and z3 are the vertices
as required. Thus we may assume that Y1 ∩ Yp = ∅. If α(Y1) ≥ 2, say z1, z2 ∈ Y1 and
z1z2 /∈ E(G), then for any z3 ∈ Yp, z1, z2 and z3 are the vertices as required. Thus
by the symmetry of Y1 and Yp, we may assume Yi is a clique of order at least 2 for
i = 1, p. Since p = m− 2, y2 and u are (2,m− 2)-connected in H. If dC(y2) ≥ 3, then
by Lemma 6 we have k = 0, which contradicts k = 2, and hence dC(y2) ≤ 2. Noting
that δ(G) ≥ m, we have dH(y2) ≥ m− 2. Thus, if Y2 = ∅, then we have y2yp ∈ E(G),
which implies that u and y3 are (2,m− 1)-connected in H. By Lemma 6, NC(y3) = ∅,
which implies that Y3 6= ∅. Let z1 ∈ Y1, z2 ∈ Y2 if Y2 6= ∅ and z2 ∈ Y3 if Y2 = ∅, and
z3 ∈ Yp, then u and zi are (3,m − 1)-connected in H. By Lemma 6, NC(zi) = ∅ for
1 ≤ i ≤ 3. Since Yi is a clique of order at least 2 for i = 1, p and E(Yi, Yj) = ∅ for
i ∈ {1, p} and j 6= i, we see that z2 /∈ {z1, z3}, and hence z1, z2 and z3 are the vertices
as required.

Lemma 8. If G[Z1] = Kp ∪Kq, then α(Z2) ≥ 4.

Proof. Let Z1 = Z11 ∪ Z12 and G[Z1i] a clique for i = 1, 2. Set Z11 = {y1, . . . , yp},
Z12 = {yp+1, . . . , yp+q}, Yi = NZ2(yi) for 1 ≤ i ≤ p + q and Z2i = N(Z1i) ∩ Z2 for
i = 1, 2. Since δ(G) ≥ m and dC(u) ≤ 2, we have p + q ≥ m− 2.

If max{p, q} ≥ m − 2, then since G contains no Cm+1, we have p ≤ m − 1. If
p = m − 1, then u and yi are (2,m)-connected in H for 1 ≤ i ≤ p. By Lemma 6,
NC(yi) = ∅, which implies that Yi 6= ∅ for 1 ≤ i ≤ p. If Yi ∩ Yj 6= ∅ or E(Yi, Yj) 6= ∅
for some i, j ∈ {1, 2, 3, 4} with i 6= j, then G contains a Cm+1, which implies that
α(∪4

i=1Yi) ≥ 4, and hence α(Z2) ≥ 4. If p = m − 2, then u and yi are (2,m − 1)-
connected in H for 1 ≤ i ≤ p. By Lemma 6, dC(yi) ≤ 1, which implies that Yi 6= ∅ for
1 ≤ i ≤ p. If Y1 ∩ Y2 6= ∅, then u and yi are (2,m)-connected in H for 1 ≤ i ≤ p. By
Lemma 6, NC(yi) = ∅, which implies that |Yi| ≥ 2 for 1 ≤ i ≤ p. Let z1 ∈ Y1 ∩ Y2 and
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zi ∈ Yi−{z1} for 3 ≤ i ≤ 5. If zi = zj for some i, j ∈ {3, 4, 5} with i 6= j or zizj ∈ E(G)
for some i, j ∈ {1, 3, 4, 5} with i 6= j, then G contains a Cm+1. Thus, {z1, z3, z4, z5} is
an independent set of size 4, and hence α(Z2) ≥ 4. By symmetry, we may assume that
Yi ∩ Yj = ∅ for all 1 ≤ i < j ≤ p. Since G contains no Cm+1, we have E(Yi, Yj) = ∅ for
i 6= j, which implies that α(∪4

i=1Yi) ≥ 4, and hence α(Z2) ≥ 4. Thus we may assume
that max{p, q} ≤ m− 3.

If Z21 ∩ Z22 6= ∅, we assume that z4 ∈ NZ2(yp) ∩NZ2(yp+q). In this case, we have
p+ q = m−2 for otherwise G contains a Cm+1. Assume without loss of generality that
p ≥ q. It is easy to see that u and yi are (2,m)-connected in H for 1 ≤ i ≤ p− 1. By
Lemma 6, NC(yi) = ∅ for 1 ≤ i ≤ p− 1. Thus, noting that p ≤ m− 3 and δ(G) ≥ m,
we have |Yi| ≥ 3 for 1 ≤ i ≤ p − 1. Since p + q = m − 2, m ≥ 7 and p ≥ q, we have
p ≥ 3. Let zi ∈ Yi − {z4} for i = 1, 2. If p ≥ 4, we let z3 ∈ Y3 − {z4}. If p = 3, then
2 ≤ q ≤ 3, which implies that |Yp+1| ≥ 2. In this case, we let z3 ∈ Yp+1 − {z4}. If
zi = zj for some i, j ∈ {1, 2, 3} with i 6= j or zizj ∈ E(G) for some i, j ∈ {1, 2, 3, 4}
with i 6= j, then G contains a Cm+1. Thus, {z1, z2, z3, z4} is an independent set of size
4, which implies that α(Z2) ≥ 4. Hence, we may assume that Z21 ∩ Z22 = ∅.

If E(Z21, Z22) 6= ∅, then G contains a Cm+1, and hence we have E(Z21, Z22) = ∅.
Assume that min{p, q} ≥ 2. If α(Z2) ≤ 3, then since Z21∩Z22 = ∅ and E(Z21, Z22) =

∅, we may assume α(Z21) = 1. Since p ≤ m − 3, δ(G) ≥ m and dC(yi) ≤ 2, we have
Yi 6= ∅ for 1 ≤ i ≤ p. Let |Z21| = r. Since δ(G) ≥ m and dC(yi) ≤ 2 for 1 ≤ i ≤ p, we
have p+ r ≥ m− 2. If p = 2 and Y1 ∩Y2 = ∅, then since dC(yi) ≤ 2 and δ(G) ≥ m ≥ 7,
we have |Y1 ∪Y2| ≥ 2(m− 4) ≥ m− 1. Noting that both G[Z11] and G[Z21] are cliques,
we see that G contains a Cm+1. If p = 2 and Y1 ∩ Y2 6= ∅ or p ≥ 3, then since both
G[Z11] and G[Z21] are cliques and Yi 6= ∅ for 1 ≤ i ≤ p, we see u and yi are (2, p+r+1)-
connected in H for 1 ≤ i ≤ p. If p + r = m− 2, then by Lemma 6, we have dC(y1) ≤ 1,
which implies that p + r ≥ m − 1, a contradiction. If p + r = m − 1, then by Lemma
6, we have NC(yi) = ∅, which implies that p + r ≥ m, again a contradiction. Thus we
have p + r ≥ m. In this case, we see that G contains a Cm+1, and hence min{p, q} = 1.

Since min{p, q} = 1, max{p, q} ≤ m − 3 and p + q ≥ m − 2, we may assume that
p = m−3 and q = 1. Obviously, u and yi are (2,m−2)-connected in H for 1 ≤ i ≤ p. By
Lemma 6, we have dC(yi) ≤ 2, which implies that Yi 6= ∅ for 1 ≤ i ≤ p. Since G contains
no Cm+1, we have dC(yp+1) ≤ m/2, which implies that Yp+1 6= ∅ since δ(G) ≥ m ≥ 7.
Thus, noting that Z21 ∩ Z22 = ∅ and E(Z21, Z22) = ∅, we have α(Z2) ≥ α(Z21) + 1,
and hence we need only to show α(Z21) ≥ 3 in the following proof. If Yi ∩ Yj = ∅ for
1 ≤ i < j ≤ p, we let zi ∈ Yi for 1 ≤ i ≤ 4. If E(G[{z1, z2, z3, z4}]) ≥ 2, then G con-
tains a Cm+1, a contradiction. If E(G[{z1, z2, z3, z4}]) ≤ 1, then α({z1, z2, z3, z4}) ≥ 3,
which implies that α(Z21) ≥ 3. Thus we may assume that z1 ∈ Y1 ∩ Y2. In this case, u

and yi are (2,m − 1)-connected in H for 1 ≤ i ≤ p. By Lemma 6, dC(yi) ≤ 1, which
implies that |Yi| ≥ 2 for 1 ≤ i ≤ p. Let zi ∈ Yi − {z1} for i = 2, 3, 4. If Yi ∩ Yj = ∅
for {i, j} 6= {1, 2}, then {z2, z3, z4} is an independent set of size 3, which implies that
α(Z21) ≥ 3. If there is some Yi ∩ Yj 6= ∅ for {i, j} 6= {1, 2}, we may assume that
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Y2 ∩ Y3 6= ∅ or Y3 ∩ Y4 6= ∅. In both cases, u and yi are (2,m)-connected in H for
1 ≤ i ≤ p. By Lemma 6, NC(yi) = ∅, which implies that |Yi| ≥ 3 for 1 ≤ i ≤ p. If
Y2 ∩ Y3 6= ∅, then Y3 ∩ Y4 = ∅ for otherwise G contains a Cm+1 and vice versa. If
Y2 ∩ Y3 6= ∅, we let z2 ∈ Y2 ∩ Y3 and zi ∈ Yi − {z1, z2} for i = 3, 4. If Y3 ∩ Y4 6= ∅, we
let z4 ∈ Y3 ∩ Y4 and zi ∈ Yi − {z1, z4} for i = 2, 3. Thus, {z2, z3, z4} is an independent
set of size 3, which implies that α(Z21) ≥ 3.

Lemma 9 (Chvátal and Erdös [4]). If α(G) ≤ κ(G) + 1, then G has a hamiltonian
path.

Lemma 10 (Cheng et al. [3]). Let G be a graph of order 6m − 5 (m ≥ 6) with
α(G) ≤ 6. If G contain no Cm, then G contains no Wm−2.

Proof of Theorem 5. We use induction on m. If m = 7, then Theorem 5 holds by
Theorem 4. Assume that Theorem 5 holds for some given m ≥ 7, we now show that
Theorem 5 holds for m + 1.

Let G be a graph of order 6(m + 1) − 5 = 6m + 1. Suppose to the contrary that
neither G contains a Cm+1 nor G contains a K7. If there is some vertex v ∈ V (G) such
that d(v) ≤ m− 1, then G′ = G−N [v] has an order of at least 5m + 1. Obviously, G′

contains no Cm+1. Thus by Theorem 3, G′ contains an independent set of size at least
6. Clearly, any independent set of size 6 in G′ and v form an independent set of size 7
in G, a contradiction. Hence we have

δ(G) ≥ m. (1)

For any v ∈ V (G), since G contains no Cm+1, by (1) we see that

G[N(v)] contains no hamiltonian path. (2)

By the induction hypothesis, G contains a cycle of length m. Let C be a cycle of
length m, H = G − C and dC(u0) = k = max{dC(h) | h ∈ H}. Define NC(u0), A, B

and Ii as in Section 2. Among all the cycles of length m in G, we choose C such that k

is as large as possible and subject to this, min{|Ii| | 1 ≤ i ≤ k} is as small as possible.
Let Ui = {u | u ∈ V (H) and dH(u0, u) = i} for i = 1, 2.

If max{|Ii| | 1 ≤ i ≤ k} = 1, then since m ≥ 7, we have k ≥ 4. We now show
that this case cannot occur. Let v ∈ U1. If N(v) ∩ A 6= ∅, say va1 ∈ E(G), then
by Lemma 2, x2x3, x3x4 /∈ E(G). Thus we have dH(x3) ≥ 3 and dH(x4) ≥ 2 by (1).
Assume that y ∈ NH(x4) − {u0} and z ∈ NH(x3) − {u0, y}. By Lemmas 2 and 3,
{u0, y, z}∪A is an independent set of size at least 7, a contradiction. By Lemma 2, we
have NC(v) ∩NC(u0) = ∅. Thus we have

NC(v) = ∅ for any v ∈ U1. (3)
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For any v ∈ U1 and w ∈ NH(v), by Lemmas 1 and 2, we see that

{w} ∪A is an independent set. (4)

Now, let v ∈ U1 be given. By (1) and (3), we have d(v) = dH(v) ≥ m. If α(G[NH(v)]) ≥
3, then by (4) we have α(G) ≥ 7, a contradiction. Hence we have α(G[NH(v)]) ≤ 2. By
Lemma 9 and (2), we may assume that G[NH(v)] = Kp ∪Kq, where p + q = d(v) ≥ m.
If p ≥ m − 1 or q ≥ m − 1, then G contains a Km, which contradicts Lemma 10.
Thus we have p ≤ m − 2 and q ≤ m − 2, which implies that q ≥ 2 and p ≥ 2. Let
u0, u1 ∈ Kp. If NH(u1) ⊆ U1 ∪ {u0}, then G[NH(u1)] is connected. By (1) and (3),
d(u1) = dH(u1) ≥ m. By Lemma 9 and (2), we may assume that α(G[NH(u1)]) ≥ 3. In
this case, we have α(G) ≥ 7 by (4), a contradiction. Thus, there is some u2 ∈ NH(u1)
such that u0u2 /∈ E(G). If NH(u2) ∩Kq = ∅, then for any u3 ∈ Kq, {u0, u2, u3} ∪ A is
an independent set of size at least 7, a contradiction. If NH(u2) ∩Kq 6= ∅, then it is
easy to see that G contains a Cm+1, again a contradiction. Thus we have

max{|Ii| | 1 ≤ i ≤ k} ≥ 2. (5)

Since |H| = 5m + 1, by Theorem 3, H contains an independent set I of size 6.
Obviously, I is also a maximum independent set of G. Since |I| = 6 and m ≥ 7, by the
choice of u0, we have k ≥ 2. By Lemma 1, k ≤ 5. Thus we have 2 ≤ k ≤ 5.

If k = 5, then by (5), there is some i such that |Ii| ≥ 2. Since δ(G) ≥ m, we have
NH(a+

i ) 6= ∅. Assume that v ∈ NH(a+
i ). By Lemma 4, {u0, v} ∪ A is an independent

set of size 7, a contradiction. Thus we have 2 ≤ k ≤ 4.

Claim 1. Let |Ii| ≥ 2 and v ∈ NH(a+
i ). If k = 4, then a+

j ∈ N(v) for all Ij with |Ij | ≥ 2.

Proof. If there exists some j 6= i such that |Ij | ≥ 2 and a+
j v /∈ E(G), then by (1),

there exists some w ∈ NH(a+
j ). By Lemma 3, wv /∈ E(G). Thus, {u0, v, w} ∪ A is an

independent set of size 7 by Lemma 4, a contradiction.

We now distinguish the following two cases separately.

Case 1. min{|Ii| | 1 ≤ i ≤ k} = 1.

Since min{|Ii| | 1 ≤ i ≤ k} = 1, by (5), there exists some i such that |Ii| = 1 and
|Ii+1| ≥ 2. Assume without loss of generality that |I1| = 1, |I2| ≥ 2 and v0 ∈ NH(a+

2 ).
Set Vi = {v | v ∈ V (H) and dH(v0, v) = i} for i = 1, 2.

Claim 2. U1 ∩ V1 = ∅.

Proof. Assume that U1 ∩ V1 6= ∅ and w0 ∈ U1 ∩ V1. Let W = NH(w0) − {u0, v0}.
By Lemma 2, we have W ∩ (U1 ∪ V1) = ∅ and x1x2, a

+
2 a+3

2 /∈ E(G). Thus we have
dH(x2) ≥ 2 and dH(a+

2 ) ≥ 2. Let v′0 ∈ NH(a+
2 ) − {v0}. By Lemma 2, v0v

′
0 /∈ E(G).
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If α(W ) ≥ 2, then for any w1, w2 ∈ W with w1w2 /∈ E(G), by Lemmas 1 and 2,
{u0, v0, v

′
0, w1, w2, a1, a2} is an independent set of size 7, and hence W is a clique. If

k = 4, then by Lemma 4, {u0, v0, v
′
0} ∪ A is an independent set of size 7, and hence

we may assume that k ≤ 3. Assume that k = 3. If |I3| = 1, then by Lemmas 2 and
4, we see that for any w ∈ W , {u0, v0, v

′
0, w} ∪ A is an independent set of size 7, a

contradiction. If |I3| ≥ 2, we let y ∈ NH(a+
3 ). If y /∈ {v0, v

′
0}, then by Lemmas 2, 3 and

4, {u0, v0, v
′
0, y}∪A is an independent set of size 7. If y ∈ {v0, v

′
0}, then by Lemmas 2, 4

and 5, {u0, v0, v
′
0, w}∪A is an independent set of size 7 for any w ∈W , a contradiction.

Thus, we may assume that k = 2. By (1) and the choice of u0, we have |W | ≥ m− 4.
Since dH(x2) ≥ 2, we may let z ∈ NH(x2)− {u0}. If z ∈ W or NW (z) 6= ∅, then since
W is a clique of order at least m−4, it is easy to see that G contains a Cm+1, and hence
z /∈W and NW (z) = ∅. If z /∈ NH(a+

2 ), then by Lemmas 1 and 2, {u0, v0, v
′
0, z, w} ∪A

is an independent set of size 7 for any w ∈W , and hence we have z ∈ NH(a+
2 ). In this

case, C ′ = u0x2za+
2
−→
C x1u0 is a Cm. By the choice of C and u0, we have a1a

+
2 /∈ E(G),

which implies that dH(a+
2 ) ≥ 3. Let v′′0 ∈ NH(a+

2 )− {v0, v
′
0}. If v′0v

′′
0 /∈ E(G), then by

Lemmas 1 and 2, {u0, v0, v
′
0, v

′′
0 , w} ∪A is an independent set of size 7 for any w ∈W ,

and hence v′0v
′′
0 ∈ E(G). By Lemma 2, z /∈ {v′0, v′′0}. If z 6= v0, then {u0, v0, v

′
0, z, w}∪A

is an independent set of size 7 for any w ∈ W , and hence z = v0. Thus, by Lemma
2, we have x2a

+
2 /∈ E(G), which implies that dH(x2) ≥ 3. Let z′ ∈ NH(x2) − {u0, z}.

Since v′0v
′′
0 ∈ E(G), by Lemma 2, z′ 6= v′0. Thus, for any w ∈ W , {u0, v0, v

′
0, z

′, w} ∪ A

is an independent set of size 7, a contradiction.

Claim 3. Let u0u1u2 be a P3 in H−{v0}. If k = 3, |I3| ≥ 2 and NH(a+
2 )∩NH(a+

3 ) = ∅,
then {u2} ∪A is an independent set.

Proof. By Lemma 2, we have u2a2 /∈ E(G). If u2a1 ∈ E(G), then by Lemma 2,
a1a

+
2 , x2a

+2
2 , a+

3 b2 /∈ E(G). If u2a3 ∈ E(G), then by Lemma 2, a1a
+
2 , x2b3, a

+
3 a+4

3 /∈
E(G). Thus we have dH(a+

2 ) ≥ 2, dH(x2) ≥ 2 and dH(a+
3 ) ≥ 2 in both cases. Let

v′0 ∈ NH(a+
2 ) − {v0}, y ∈ NH(x2) − {u0} and w0, w

′
0 ∈ NH(a+

3 ). If v0v
′
0 /∈ E(G), then

by Lemmas 3 and 4, {u0, w0, v0, v
′
0} ∪ A is an independent set of size 7, and hence

v0v
′
0 ∈ E(G). Similarly, w0w

′
0 ∈ E(G). Thus, we have y /∈ {v0, v

′
0} and yv0 /∈ E(G) by

Lemma 2, and y /∈ {w0, w
′
0} and yw0 /∈ E(G) by Lemma 3. By Lemmas 1 and 4, we

see that {u0, v0, w0, y} ∪ A is an independent set of size 7, a contradiction. Thus we
have u2a1, u2a3 /∈ E(G), and hence {u2} ∪A is an independent set.

Claim 4. If k ≥ 3 and U2 6= ∅, then U2 is a clique.

Proof. If k = 4, then by Lemma 5 and Claim 1, we have E(U2, A) = ∅. If k = 3, then
by Lemma 5 and Claim 3, we have E(U2, A) = ∅. By Lemma 2, NU2(v0) = ∅. By Claim
2, v0 /∈ U2. Thus, if α(U2) ≥ 2, then by Lemma 4, we have α(U2 ∪A ∪ {u0, v0}) ≥ 7, a
contradiction.

Claim 5. Let P = y1 · · · yp be a longest path in G[U1]. If k ≥ 3, then p ≤ m− k − 1.
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Proof. If p ≥ m− k, then u0 and yi are (2,m− k + 1)-connected in H for i = 1, p. By
Lemma 6, NC(yi) = ∅ for i = 1, p. Since G contains no Cm+1, we have p ≤ m− 1. By
(1) and the maximality of P , we have dU2(yi) ≥ m− p ≥ 1 for i = 1, p. By Claim 4, U2

is a clique. Let P ′ = y1u0y2
−→
P yp, then |P ′| = p + 1. If |(N(y1)∪N(yp))∩U2| = 1, then

p = m−1. Let z ∈ (N(y1)∪N(yp))∩U2, then y1
−→
P ′ypzy1 is a Cm+1, a contradiction. If

|(N(y1)∪N(yp))∩U2| ≥ 2, then there are two vertices z1, zp ∈ U2 such that yizi ∈ E(G)
for i = 1, p. Since |U2| ≥ m− p and U2 is a clique, G[U2] contains a (z1, zp)-path P ′′ of
order m − p. Thus, the paths P ′,P ′′, together with the edges y1z1, ypzp form a Cm+1,
again a contradiction.

Claim 6. If k ≥ 3, then for any u ∈ U1, NU2(u) 6= ∅.

Proof. Let U0 = U1 ∪ {u0}. If NU2(u) = ∅, then NH [u] ⊆ U0. Let N(u) ∩ U1 = U ′
1. By

Lemma 2, N(v0)∩U ′
1 = ∅. By Lemma 5 and Claims 1, 3, we have E(U ′

1, A) = ∅. Thus,
if α(U ′

1) ≥ 3, then by Lemma 4, we have α(U ′
1∪A∪{v0}) ≥ 7, and hence α(U ′

1) ≤ 2. By
Lemma 9, G[U ′

1 ∪ {u}] contains a hamiltonian path, which implies that G[U1] contains
a path of order at least m− k. By Claim 5, this is a contradiction.

By Claim 2, U1 ∩ V1 = ∅. By Lemma 2, N(v0) ∩ U2 = ∅. If k = 4, then U2 6= ∅
by Claim 6. By Lemma 5 and Claim 1, E(U2, A) = ∅. Thus, by Lemma 4, we have
α(U2 ∪ A ∪ {u0, v0}) ≥ 7, a contradiction. If k = 3, then U2 6= ∅ By Claim 6. By
Lemma 5 and Claim 3, E(U2, A) = ∅. By Claim 4, U2 is a clique. If G[U1] contains
an isolated vertex, say u′ ∈ U1 and dU1(u

′) = 0, then by (1) and the choice of u0, we
have dU2(u

′) ≥ m − 4, which implies that U2 is a clique of order at least m − 4. By
Claim 6, N(u) ∩ U2 6= ∅ for any u ∈ U1. Thus, noting that dU2(u

′) ≥ m − 4 ≥ 3,
it is easy to see that H contains a (u0, u)-path of order m − 1 for any u ∈ U1. This
implies that E(U1, A) = ∅ for otherwise G contains a Cm+1. If α(U1) ≥ 3, then by
Lemmas 2 and 4, we have α(U1 ∪A ∪ {v0}) ≥ 7, a contradiction. Hence, α(U1) ≤ 2. If
G[U1] contains no isolated vertices, then by Lemmas 2, 5 and Claim 3, {u, v0}∪A is an
independent set for any u ∈ U1, which implies that α(U1) ≤ 2. Thus we have α(U1) ≤ 2
in both cases. If G[U1] is connected, then by Lemma 9, G[U1] contains a hamiltonian
path, which contradicts Claim 5. Thus, we may assume that G[U1] = Kp ∪Kq, where
p + q ≥ m − 3. If p + q + |U2| ≥ m, then by Claims 4 and 6, it is easy to see
that G contains a Cm+1. Hence we have p + q + |U2| ≤ m − 1, which implies that
p + q ≤ m − 2 and |U2| ≤ 2. If |U2| = 1, then for any u ∈ Kp, by (1) we have
m ≤ d(u) ≤ dC(u) + p + |U2| ≤ 3 + b(m − 2)/2c + 1, which implies that m ≤ 6, a
contradiction. Therefore, we have |U2| = 2 and p + q = m − 3. For any u ∈ Kp, by
(1) we have m ≤ d(u) ≤ 3 + 2 + b(m − 3)/2c, which implies that m = 7, p = 2 and
U2 ⊆ N(u). In this case, u and u0 are (2, 5)-connected in H. By Lemma 6, NC(u) = ∅,
which implies that d(u) ≤ 4, a contradiction. Therefore, we may assume that k = 2. If
α(G[U1]) ≥ 3 and α(G[V1]) ≥ 3, then by Lemma 2, we see that α(U1 ∪ V1 ∪ {x2}) ≥ 7,
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a contradiction. Thus we have α(G[U1]) ≤ 2 or α(G[V1]) ≤ 2. If α(G[U1]) ≤ 2, then
by Lemma 9, either G[U1] has a hamiltonian path or G[U1] is the disjoint union of two
complete graphs. Thus, we have α(U2 ∪ A ∪ {u0, v0}) ≥ 7 by Lemmas 4 and 7 in the
former case and α(U2 ∪ {u0, v0, a2}) ≥ 7 by Lemmas 2, 4 and 8 in the latter case. If
α(G[V1]) ≤ 2, then by Lemma 9, either G[V1] has a hamiltonian path or G[V1] is the
disjoint union of two complete graphs. Thus, we have α(V2 ∪ A ∪ {u0, v0}) ≥ 7 by
Lemmas 4 and 7 in the former case and α(V2 ∪ {u0, v0, a1}) ≥ 7 by Lemmas 2, 4 and 8
in the latter case.

Case 2. min{|Ii| | 1 ≤ i ≤ k} ≥ 2.

In this case, we still let v0 ∈ NH(a+
2 ) and Vi = {v | v ∈ V (H) and dH(v0, v) = 2}

for i = 1, 2.

If k = 4, then by Claim 1, we have a+
i ∈ NC(v0) for 1 ≤ i ≤ 4. Obviously,

C ′ = u0x2
←−
C a+

1 v0a
+
2
−→
C x1u0 is a Cm. By the choice of C and u0, we have {x2, x3, x4} 6⊆

N(a1), which implies that there is some xi with 2 ≤ i ≤ 4 such that dH(xi) ≥ 2. Let
w0 ∈ NH(xi) − {u0}. By the choice of u0, we have w0 6= v0. Thus, by Lemmas 3 and
4, we see that {u0, v0, w0} ∪A is an independent set of size 7, a contradiction.

Let k = 3. If NH(a+
i )∩NH(a+

j ) = ∅ for 1 ≤ i < j ≤ 3, then by Lemmas 3 and 4, we
have α(G) ≥ 7, a contradiction. Hence we may assume without loss of generality that
v0 ∈ NH(a+

2 )∩NH(a+
3 ). Obviously, C ′ = u0x3

←−
C a+

2 v0a
+
3
−→
C x2u0 is a Cm. By the choice

of C and u0, we have x2, a
+
2 /∈ N(a3) and x3, a

+
3 /∈ N(a2). Thus we have dH(a+

i ) ≥ 2
and dH(xi) ≥ 2 for i = 2, 3. Let v′0 ∈ NH(a+

3 ) − {v0}, then v0v
′
0 /∈ E(G) by Lemma

3. Let y ∈ NH(a+
2 ) − {v0}. If y 6= v′0, then by Lemmas 3 and 4, {u0, y, v0, v

′
0} ∪ A

is an independent set of size 7, and hence y = v′0. Let z ∈ NH(a+
1 ). If z /∈ {v0, v

′
0},

then by Lemmas 3 and 4, {u0, z, v0, v
′
0} ∪ A is an independent set of size 7, and hence

we may assume that z = v0. In this case, C ′′ = u0x2
←−
C a+

1 v0a
+
2
−→
C x1u0 is a Cm. By

the choice of C and u0, we have a1a
+
2 /∈ E(G), which implies that dH(a+

2 ) ≥ 3. Let
v′′0 ∈ NH(a+

2 )−{v0, v
′
0}, then by Lemmas 3 and 4, {u0, v0, v

′
0, v

′′
0}∪A is an independent

set of size 7, a contradiction.

Let k = 2. If NH(a+
1 ) ∩NH(a+

2 ) 6= ∅, we assume that v0 ∈ NH(a+
1 ) ∩NH(a+

2 ) and
|I1| ≤ |I2|. In this case, C ′ = u0x2

←−
C a+

1 v0a
+
2
−→
C x1u0 is a Cm. By the choice of C and

u0, we have

NC(ai) = NC′(ai) = {xi, a
+
i } for i = 1, 2. (6)

Since m ≥ 7, we have |I2| ≥ 3, which implies that a+2
2 6= x1. If b1a

+2
2 ∈ E(G), then

u0x2
−→
C a+

2 v0a
+
1
−→
C b1a

+2
2
−→
C x1u0 is a Cm+1, a contradiction. Hence we have b1a

+2
2 /∈ E(G).

By (1) and (6), we have dH(a+
2 ) ≥ 2. Assume v′0 ∈ NH(a+

2 ) − {v0}. By Lemma 3,
v0v

′
0 /∈ E(G). By Lemma 1, v0, v

′
0 /∈ N(a+2

2 ). If |I1| ≥ 3, then by the choice of C and
u0, we have v0, v

′
0 /∈ N(b1). Thus, by Lemmas 1, 4 and (6), {u0, v0, v

′
0, b1, a

+2
2 } ∪ A is
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an independent set of size 7, a contradiction. Hence we may assume that |I1| = 2. Let
NH(x2)− {u0} = Z. By (1) and (6), Z 6= ∅. By the choice of u0, we have NZ(a1) = ∅.
By Lemma 1, NZ(a2) = ∅. By Lemmas 2 and 3, NZ(u0) = NZ(v0) = NZ(v′0) = ∅.
If α(Z) ≥ 2 or there is some vertex z ∈ Z such that za+2

2 /∈ E(G), then we have
α(A ∪ Z ∪ {u0, v0, v

′
0}) ≥ 7 or α(A ∪ {u0, v0, v

′
0, z, a+2

2 }) ≥ 7, a contradiction. Hence
we may assume that Z is a clique and Z ⊆ N(a+2

2 ). Thus, by Lemma 2, we have
|Z| ≤ 2. Let z1 ∈ Z. If x2a

+
2 ∈ E(G), then v0a

+
2 x2z1a

+2
2
−→
C b1v0 is a Cm+1, and hence

x2a
+
2 /∈ E(G). By Lemma 1, x2a

+2
2 /∈ E(G). By (6), a1x2 /∈ E(G). Thus we have

a1, a
+
2 , a+2

2 /∈ NC(x2). By (1), we have |Z| ≥ 3, which contradicts |Z| ≤ 2. Hence, we
may assume that NH(a+

1 ) ∩NH(a+
2 ) = ∅.

Let NH(a+
i ) = Zi for i = 1, 2. If α(Z1) ≥ 2 and α(Z2) ≥ 2, then by Lemmas 3 and

4, we have α(Z1∪Z2∪A∪{u0}) ≥ 7, a contradiction. Thus, either Z1 or Z2 is a clique.
Assume without loss of generality that Z2 is a clique. We now show that H contains no
(u0, v0)-paths of order l with l = 3 or 4. If not, we have |Z2| ≤ m− 5 for otherwise G

contains a Cm+1. Let |Z2| = t. Since l ≤ 4, we have l+t−1 ≤ m−2, which implies that
a

+(l+t−1)
2 ∈ a+

2
−→
C x2. Since Z2 is a clique of order t, by Lemma 2, we have v /∈ N(a+

2 ) for
each v ∈ a+l

2
−→
C a

+(l+t−1)
2 , and hence d(a+

2 ) ≤ m− 1, which contradicts (1). This implies
that U1∩V1 = ∅ and E(U1, V1) = ∅. If α(U1) ≥ 3 and α(V1) ≥ 3, then by Lemmas 2 and
3, we have α(U1∪V1∪{a+

1 }) ≥ 7, and hence either α(U1) ≤ 2 or α(V1) ≤ 2. If G[U1] or
G[V1] has a hamiltonian path, then by Lemmas 4 and 7, we have α(U2∪A∪{u0, v0}) ≥ 7
or α(V2 ∪A ∪ {u0, v0}) ≥ 7, a contradiction. Thus, by Lemma 9, either G[U1] or G[V1]
is the disjoint union of two complete graphs. Suppose G[U1] is the disjoint union of
two complete graphs. If |I2| ≥ 3, then v0a

+2
2 /∈ E(G) by Lemma 1 and NU2(a

+2
2 ) = ∅

by Lemma 2. Thus, by Lemma 8, we have α(U2 ∪ {u0, v0, a
+2
2 }) ≥ 7. If |I2| = 2, then

we have |I1| ≥ 3 since m ≥ 7. If a+2
1 6= b−2

1 or a+2
1 = b−2

1 and a+2
1 v0 /∈ E(G), then

since dC(v0) ≤ 2, by Lemmas 2 and 8, we see that either α(U2 ∪ {u0, v0, a
+2
1 }) ≥ 7

or α(U2 ∪ {u0, v0, b
−2
1 }) ≥ 7. If a+2

1 = b−2
1 and a+2

1 v0 ∈ E(G), then |I1| = 5 and
hence m = 9. If N(b1) ∩ U2 6= ∅, we let z ∈ NU2(b1) and u0yz is a P3 in H − {v0}.
Thus, u0yzb1b

−
1 b−2

1 v0a
+
2 a2x2u0 is a Cm+1, and hence N(b1)∩U2 = ∅. Thus, by Lemma

8, we have α(U2 ∪ {u0, v0, b1}) ≥ 7, a contradiction. Now, assume that G[V1] is the
disjoint union of two complete graphs. If v0b1 /∈ E(G), then by Lemmas 3 and 8,
we have α(V2 ∪ {u0, v0, b1}) ≥ 7. Hence we may assume that b1v0 ∈ E(G). Since
a+

1 v0 /∈ E(G), we have |I1| ≥ 3. By the choice of u0, we have |I2| = 2. In this case,
a+

1 = a+4
2 . By Lemma 2, N(a+4

2 ) ∩ V2 = ∅. Since |I1| ≥ 3, we have a+4
2 = a+

1 6= b1,
which implies that a+4

2 v0 /∈ E(G) since dC(v0) ≤ 2. Thus, by Lemmas 2 and 8, we have
α(V2 ∪ {u0, v0, a

+4
2 }) ≥ 7, a contradiction.

Up to now, we have shown that R(Cm,K7) ≤ 6m − 5. On the other hand, since
6Km−1 contains no Cm and its complement contains no K7, we have R(Cm,K7) ≥
6m− 5, and hence R(Cm,K7) = 6m− 5.
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3. Proof of Theorem 6

To prove Theorem 6, we need the following lemmas in addition to Theorem 5.

Lemma 11 (Ore [7]). Let G be a graph of order n. If σ2(G) ≥ n, then G is hamiltonian.

The following lemma can be deduced from the known Ramsey numbers, see [8].

Lemma 12. R(B2,K7) ≤ 34.

Lemma 13. Let G be a graph of order 7m− 6 (m ≥ 7) with α(G) ≤ 7. If G contains
no Cm, then δ(G) ≥ m− 1.

Proof. If there is some vertex v such that d(v) ≤ m− 2, then G′ = G−N [v] is a graph
of order at least 6m − 5. Since R(Cm,K7) = 6m − 5 for m ≥ 7 by Theorem 5 and G′

contains no Cm, we have α(G′) ≥ 7. Thus, an independent set of order at least 7 in
G′ together with v form an independent set of order at least 8 in G, which contradicts
α(G) ≤ 7.

Lemma 14. Let G be a graph of order 7m− 6 (m ≥ 7) with α(G) ≤ 7. If G contains
no Cm, then G contains no Wm−2.

Proof. Suppose to the contrary that G contains a Wm−2 = {w0} + C, where C =
w1 · · ·wm−2 is a cycle of length m − 2. Set U = V (G) − V (Wm−2). By Lemma 13,
δ(G) ≥ m − 1. Thus we have NU (wi) 6= ∅ for 0 ≤ i ≤ m − 2. Let vi ∈ NU (wi) and
Vi = NU [vi], where 0 ≤ i ≤ m− 2. Since G contains no Cm, we have

N(Vi) ∩Wm−2 = {wi} for 0 ≤ i ≤ m− 2, (7)

Vi ∩ Vj = ∅ for 0 ≤ i < j ≤ m− 2, (8)

and

E(V0, Vi) = ∅ for 1 ≤ i ≤ m− 2. (9)

By (7), we have dWm−2(vi) = 1, which implies that |Vi| ≥ m− 1 for 0 ≤ i ≤ m− 2 since
δ(G) ≥ m−1. By (8), we have m(m−1) ≤ |Wm−2∪(∪m−2

i=0 Vi)| ≤ 7m−6, which implies
that m ≤ 7, and hence m = 7. In this case, |G| = 43. Thus by (8) we have 6 ≤ |Vi| ≤ 7
for 0 ≤ i ≤ 5. If there is some Vi such that |Vi| = 7, then V (G) = V (W5) ∪ (∪5

i=0Vi).
By (7) and (9), we have N(V0) ⊆ V0 ∪ {w0}. If |V0| = 7, then since δ(G) ≥ 6, we have
δ(G[V0]) ≥ 5. By Lemma 11, G[V0] contains a C7, a contradiction. If |V0| = 6, then
G[V0 ∪ {w0}] = K7 since δ(G) ≥ 6, also a contradiction. If |Vi| = 6 for 0 ≤ i ≤ 5, then
V (G)− (V (W5)∪ (∪5

i=0Vi)) contains exactly one vertex, say y. By (7) and (9), we have
N(V0) ⊆ V0∪{w0, y}. Noting that δ(G) ≥ 6, we have dV0(w0) ≥ 3 or dV0(y) ≥ 3, which
implies that that either G′ = G[V0 ∪ {w0}] or G′′ = G[V0 ∪ {y}] is a graph of order 7
with minimum degree at least 3 and has at most one vertex of degree 3. By Lemma
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11, either G′ or G′′ contains a C7, again a contradiction.

Proof of Theorem 6. Let G be a graph of order 43. Suppose to the contrary that
neither G contains a C7 nor G contains a K8. By Lemma 13, we have δ(G) ≥ 6.

Before starting to prove Theorem 6, we first establish the following claims.

Claim 7. G contains no K1 + P5.

Proof. Suppose that G contains K1 + P5, say, P = v1 · · · v5 and V (P ) ⊆ N(v0). Let
U = V (G)− {vi | 0 ≤ i ≤ 5} and NU (vi) = Ui for 0 ≤ i ≤ 5. Because of δ(G) ≥ 6, we
have Ui 6= ∅ for 0 ≤ i ≤ 5.

If U2 ∩ U4 6= ∅, then we let v6 ∈ U2 ∩ U4, X = {vi | 0 ≤ i ≤ 6} and Y = V (G)−X.
Set Yi = NY (vi), zi ∈ Yi and Zi = NY (zi) for 0 ≤ i ≤ 6. If v3v6 ∈ E(G), then G

contains a C7. By Lemma 14, v1v5 /∈ E(G). Thus, noting that |X| = 7 and δ(G) ≥ 6,
we have Yi 6= ∅ for i = 1, 3, 5, 6. Since G contains no C7, it is easy to check that
Yi ∩ Yj = ∅ for i = 1, 3, 5, 6 and j 6= i, and E(Yi, Yj) = ∅ for i, j ∈ {1, 3, 5, 6} and i 6= j.
Thus we have |Zi| ≥ 5 for i = 1, 3, 5, 6. For the same reason, we have Zi ∩ Zj = ∅ and
E(Zi, Zj) = ∅ for i, j ∈ {1, 3, 5, 6} and i 6= j. By Lemma 14, we have α(Zi) ≥ 2 for
i = 1, 3, 5, 6. Thus we have α(Z1 ∪ Z3 ∪ Z5 ∪ Z6) ≥ 8, a contradiction. Hence we have
U2 ∩ U4 = ∅.

If U0 ∩ U4 6= ∅, we let v6 ∈ U0 ∩ U4, X = {vi | 0 ≤ i ≤ 6} and Y = V (G) − X.
Set Yi = NY (vi), zi ∈ Yi and Zi = NY (zi) for 0 ≤ i ≤ 6. Since U2 ∩ U4 = ∅, we
have Y2 ∩ Y4 = ∅. If Y2 ∩ Y0 = ∅, then since G contains no C7, it is easy to see that
Yi ∩ Yj = ∅ for i = 1, 2, 5, 6 and j 6= i, which implies that |Zi| ≥ 5 for i = 1, 2, 5, 6. By
Lemma 14, α(Zi) ≥ 2 for i = 1, 2, 5, 6. Since G contains no C7, we have Zi∩Zj = ∅ and
E(Zi, Zj) = ∅ for i, j ∈ {1, 2, 5, 6} and i 6= j. Thus, we have α(Z1∪Z2∪Z5∪Z6) ≥ 8, a
contradiction. Hence, we may assume Y2∩Y0 6= ∅, say v7 ∈ Y2∩Y0. Let X ′ = X ∪{v7}
and Y ′ = V (G) − X ′. Set Y ′

i = NY ′(vi), z′i ∈ Y ′
i and NY ′(z′i) = Z ′

i for 0 ≤ i ≤ 7.
Since G contains no C7, {v1, v5, v6, v7} is an independent set. Thus we have Y ′

i 6= ∅
for i = 1, 5, 6, 7. In this case, it is easy to see that Y ′

i ∩ Y ′
j = ∅ for i = 1, 5, 6, 7 and

j 6= i since otherwise G contains a C7. This implies that |Z ′
i| ≥ 5 for i = 1, 5, 6, 7. By

Lemma 14, α(Z ′
i) ≥ 2. Since G contains no C7, we have Z ′

i ∩Z ′
j = ∅ and E(Z ′

i, Z
′
j) = ∅

for i, j ∈ {1, 5, 6, 7} and i 6= j, which implies that α(Z ′
1 ∪ Z ′

5 ∪ Z ′
6 ∪ Z ′

7) ≥ 8, again a
contradiction. Thus we have U0 ∩ U4 = ∅. By the symmetry of U2 and U4, we have
U0 ∩ U2 = ∅. Therefore, U0 ∩ (U2 ∪ U4) = ∅.

Since G contains no C7, we have Ui ∩ Uj = ∅ for i = 1, 5 and j 6= i, and U3 ∩ (U2 ∪
U4) = ∅. Thus, noting that U2 ∩ U4 = U0 ∩ (U2 ∪ U4) = ∅, we have Ui ∩ Uj = ∅ for
i ∈ {1, 2, 4, 5} and j 6= i. Let ui ∈ Ui and Vi = NU (ui) for i = 1, 2, 4, 5, then we have
|Vi| ≥ 5. By Lemma 14, α(Vi) ≥ 2. Since G contains no C7, we see that V1, V2, V4 and
V5 are pairwise disjoint and there are no edges between any two of them. Thus we have
α(V1 ∪ V2 ∪ V4 ∪ V5) ≥ 8, a contradiction.
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Claim 8. G contains no W−
5 .

Proof. Suppose that G contains a W−
5 , say, C = v1 · · · v5 and W−

5 = {v0}+C−{v0v1}.
Let U = V (G) − {vi | 0 ≤ i ≤ 5} and Ui = NU (vi) for 0 ≤ i ≤ 5. Since δ(G) ≥ 6, we
have Ui 6= ∅. Noting that G contains no C7, we have Ui ∩ Uj = ∅ for i ∈ {0, 1, 3, 4}
and j 6= i, and E(Ui, Uj) = ∅ for i, j ∈ {0, 1, 3, 4} and i 6= j. Take ui ∈ Ui and set
Vi = NU (ui) for i = 0, 1, 3, 4, then we have |Vi| ≥ 5. By Lemma 14, α(Vi) ≥ 2 for
i = 0, 1, 3, 4. Since G contains no C7, we have Vi ∩ Vj = ∅ and E(Vi, Vj) = ∅ for
i, j ∈ {0, 1, 3, 4} and i 6= j, which implies that α(V0∪V1∪V3∪V4) ≥ 8, a contradiction.

Claim 9. G contains no W4.

Proof. Suppose that G contains a W4, say C = v1 · · · v4 is a cycle and V (C) ⊆ N(v0).
Let U = V (G) − {vi | 0 ≤ i ≤ 4} and set Ui = NU (vi) for 0 ≤ i ≤ 4. By Claim 7,
U0 ∩ Ui = ∅ for 1 ≤ i ≤ 4. By Claim 8, U1 ∩ U2 = U2 ∩ U3 = U3 ∩ U4 = U4 ∩ U1 = ∅. If
U1 ∩ U3 6= ∅, then U2 ∩ U4 = ∅ for otherwise av1v0v2bv4v3 is a C7, where a ∈ U1 ∩ U3

and b ∈ U2 ∩ U4. By symmetry, we may assume that U1 ∩ U3 = ∅. Let ui ∈ Ui

for 0 ≤ i ≤ 4. Since δ(G) ≥ 6, we have |Ui| ≥ 2. Thus we can choose u2 such
that u2 6= u4. Set Vi = NU (ui) for i = 0, 1, 3. By the arguments above, we have
|Vi| ≥ 5 for i = 0, 1, 3. By Lemma 14, α(Vi) ≥ 2 for i = 0, 1, 3. Since G contains no
C7, we have u2u4 /∈ E(G) and u2, u4 /∈ V0 ∪ V1 ∪ V3. For the same reason, we have
E({u2, u4}, V0∪V1∪V3) = ∅, Vi∩Vj = ∅ and E(Vi, Vj) = ∅ for i, j ∈ {0, 1, 3} and i 6= j,
which implies that α({u2, u4} ∪ V0 ∪ V1 ∪ V3) ≥ 8, a contradiction.

Claim 10. G contains no K4.

Proof. Suppose that G contains a K4, say S = {v1, v2, v3, v4} is a clique. Set U =
V (G)− S and Ui = NU (vi) for 1 ≤ i ≤ 4. Since δ(G) ≥ 6, we have |Ui| ≥ 3.

If there are Ui and Uj with i 6= j such that Ui ∩ Uj 6= ∅, we assume without loss
of generality that v5 ∈ U3 ∩ U4. Let X = S ∪ {v5}, Y = V (G) −X and Yi = NY (vi)
for 1 ≤ i ≤ 5. By Claim 7, we have (Y3 ∪ Y4) ∩ (Y1 ∪ Y2 ∪ Y5) = ∅. By Claim 8,
Y5∩(Y1∪Y2) = ∅. Since G contains no C7, we have E(Yi, Yj) = ∅ for i, j ∈ {1, 2, 3, 5} and
j 6= i. Let zi ∈ Yi and Zi = NY (zi) for i = 1, 2, 3, 5. Since δ(G) ≥ 6, we may choose u1

such that u1 6= u2. By the arguments above, we have |Zi| ≥ 4 for i = 1, 2, 3, 5. By Claim
9, α(Zi) ≥ 2. Because G contains no C7, we see that Zi ∩Zj = ∅ and E(Zi, Zj) = ∅ for
i, j ∈ {1, 2, 3, 5} and i 6= j, which implies that α(Z1∪Z2∪Z3∪Z5) ≥ 8, a contradiction.
Hence we have Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ 4.

Take ui ∈ Ui for 1 ≤ i ≤ 4. Set T = {u1, u2, u3, u4}, U ′ = U − T and NU ′(ui) = Vi

for 1 ≤ i ≤ 4. If ∆(G[T ]) ≥ 2, then G contains a C7, and hence we may assume that
∆(G[T ]) ≤ 1. Thus, noting that Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ 4, we have |Vi| ≥ 4
for 1 ≤ i ≤ 4. By Claim 9, α(Vi) ≥ 2. Since G contains no C7, it is easy to see that
Vi ∩ Vj = ∅ and E(Vi, Vj) = ∅ for 1 ≤ i < j ≤ 4, which implies that α(∪4

i=1Vi) ≥ 8, a
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contradiction.

Claim 11. G contains no K1 + P4.

Proof. Suppose that G contains K1+P4, say P = v1v2v3v4 is a path and V (P ) ⊆ N(v0).
Set S = {vi | 0 ≤ i ≤ 4}, U = V (G)− S and Ui = NU (vi) for 0 ≤ i ≤ 4.

If U3∩U4 6= ∅, we let v5 ∈ U3∩U4. Set X = S∪{v5}, Y = V (G)−X and Yi = NY (vi)
for 0 ≤ i ≤ 5. Since G contains no C7, we have Y1 ∩ Yi = ∅ for i 6= 1, Y2 ∩ Yi = ∅ for
i 6= 0, 2 and Y4 ∩ Yi = ∅ for i 6= 3, 4. For the same reason, we have E(Yi, Yj) = ∅ for
i, j ∈ {1, 2, 4} and i 6= j. Let zi ∈ Yi and Zi = NY (zi) for i = 1, 2, 4. By the arguments
above, we have |Z1| ≥ 5 and |Zi| ≥ 4 for i = 2, 4. Note that G contains no C7, we see
that E({v5}, Z1∪Z2∪Z4) = ∅, Z1, Z2 and Z4 are pairwise disjoint and there is no edges
between any two of them. By Claims 7, 9 and 10, we have α(Z1) ≥ 3 and α(Zi) ≥ 2
for i = 2, 4, which implies that α({v5} ∪ Z1 ∪ Z2 ∪ Z4) ≥ 8, a contradiction. Hence we
have U3 ∩ U4 = ∅. By symmetry, U1 ∩ U2 = ∅. Thus we have U1 ∩ U2 = U3 ∩ U4 = ∅.

If U2 ∩ U4 6= ∅, we let v5 ∈ U2 ∩ U4. Set X = S ∪ {v5}, Y = V (G) − X and
Yi = NY (vi) for 0 ≤ i ≤ 5. Since G contains no C7, we have Yi ∩ Yj = ∅ for i = 1, 5
and j 6= i. Let zi ∈ Yi and Zi = NY (zi) for i = 1, 5, then by the arguments above, we
have |Zi| ≥ 5 for i = 1, 5. By Claims 7, 9 and 10, we have α(Zi) ≥ 3 for i = 1, 5. By
Claim 10, v2v4 /∈ E(G). If Z1 ∩ Z5 6= ∅ or E(Z1, Z5) 6= ∅ or E({v2, v4}, Z1 ∪ Z5) 6= ∅,
then G contains a C7, a contradiction. Thus we have α({v2, v4} ∪ Z1 ∪ Z5) ≥ 8, a
contradiction. Hence we have U2 ∩ U4 = ∅. By symmetry, U1 ∩ U3 = ∅. Thus we have
U1 ∩ U3 = U2 ∩ U4 = ∅.

By the arguments above, we have (U1 ∪ U4) ∩ (U2 ∪ U3) = ∅. By Claim 7, U0 ∩
(U1 ∪ U4) = ∅. By Claim 8, U1 ∩ U4 = ∅. Thus, we have Ui ∩ Uj = ∅ for i = 1, 4 and
j 6= i. Let ui ∈ Ui for 1 ≤ i ≤ 4. Since δ(G) ≥ 6, we may choose u2, u3 such that
u2 6= u3. Set Vi = NU (ui) for i = 1, 4, then we have |Vi| ≥ 5 for i = 1, 4. By Claims 7,
9 and 10, we have α(Vi) ≥ 3 for i = 1, 4. If u2u3 ∈ E(G) or {u2, u3} ∩ (V1 ∪ V4) 6= ∅ or
E({u2, u3}, V1∪V4) 6= ∅, then G contains a C7, a contradiction. For the same reason, we
have V1 ∩ V4 = ∅ and E(V1, V4) = ∅, which implies that that α({u2, u3} ∪ V1 ∪ V4) ≥ 8,
a contradiction.

Claim 12. G contains no B3.

Proof. Assume that G contains a B3, say, v1v2 ∈ E(G) and v3, v4, v5 ∈ N(v1) ∩N(v2).
Set U = V (G)− {vi | 1 ≤ i ≤ 5} and Ui = NU (vi) for 1 ≤ i ≤ 5.

If U3 ∩ U4 6= ∅, we assume v6 ∈ U3 ∩ U4. Set X = {vi | 1 ≤ i ≤ 6}, Y = V (G)−X

and Yi = NY (vi) for 1 ≤ i ≤ 6. Since G contains no C7, we see that Y5 ∩ Yi = ∅ for
i 6= 5 and Yi ∩ Yj = ∅ for i = 3, 4 and j 6= 3, 4. Thus we can take zi ∈ Yi for 3 ≤ i ≤ 5
such that z3 6= z4. Note that G contains no C7, zizj /∈ E(G) for 3 ≤ i < j ≤ 5.
Set Zi = NY (zi) for 3 ≤ i ≤ 5. By the arguments above, we have |Z5| ≥ 5 and
|Zi| ≥ 4 for i = 3, 4. By Claims 7, 9 and 10, we have α(Z5) ≥ 3 and α(Zi) ≥ 2 for
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i = 3, 4. If E({v6},∪5
i=3Zi) 6= ∅, then G contains a C7, a contradiction. For the same

reason, we have Zi ∩ Zj = ∅ and E(Zi, Zj) = ∅ for 3 ≤ i < j ≤ 5. Thus we get that
α({v6}∪ (∪5

i=3Zi)) ≥ 8, a contradiction. Hence we have U3 ∩U4 = ∅. By symmetry, we
have Ui ∩ Uj = ∅ for 3 ≤ i < j ≤ 5.

By Claim 11, we have (U1∪U2)∩ (U3∪U4∪U5) = ∅, which implies that Ui∩Uj = ∅
for i = 3, 4, 5 and j 6= i. Let ui ∈ Ui and NU (ui) = Vi for i = 3, 4, 5. Since δ(G) ≥ 6, by
the arguments above, we have |Vi| ≥ 5 for i = 3, 4, 5. By Claims 7, 9 and 10, we have
α(Vi) ≥ 3. Thus, noting that G contains no C7, we have Vi ∩ Vj = ∅ and E(Vi, Vj) = ∅
for 3 ≤ i < j ≤ 5, which implies that α(∪5

i=3Vi) ≥ 9, a contradiction.

Claim 13. G contains no W−
4 .

Proof. Suppose G contains a W−
4 , say, W−

4 = {v5}+ C − {v1v5}, where C = v1v2v3v4

is a cycle. Set S = {vi | 1 ≤ i ≤ 5}, U = V (G)− S and Ui = NU (vi) for 1 ≤ i ≤ 5.
If U1∩U5 6= ∅, we let v6 ∈ U1∩U5. Set X = S∪{v6}, Y = V (G)−X and Yi = NY (vi)

for 1 ≤ i ≤ 6. Since G contains no C7, we have E(Y4, Y6) = ∅ and Yi ∩ Yj = ∅ for
i = 4, 6 and j 6= i. Let zi ∈ Yi and Zi = NY (zi) for i = 4, 6. By the arguments above,
we have |Zi| ≥ 5. By Claims 7, 9 and 10, we have α(Zi) ≥ 3 for i = 4, 6. Because G

contains no C7, we have Z4∩Z6 = ∅, E(Z4, Z6) = ∅ and E({v1, v5}, Z4∪Z6) = ∅, which
implies that α({v1, v5} ∪Z4 ∪Z6) ≥ 8, a contradiction. Thus we have U1 ∩U5 = ∅. By
the symmetry of U3 and U5, we have U1 ∩ U3 = ∅, and hence U1 ∩ (U3 ∪ U5) = ∅.

If U1∩U4 6= ∅, we let v6 ∈ U1∩U4. Set X = S∪{v6}, Y = V (G)−X and Yi = NY (vi)
for 1 ≤ i ≤ 6. Since G contains no C7, we have E(Y3, Y6) = ∅ and Y6 ∩Yi = ∅ for i 6= 6.
By Claim 11, Y3 ∩ (Y2 ∪ Y4) = ∅. By Claim 12, Y3 ∩ Y5 = ∅. If Y3 ∩ Y1 6= ∅, then G

contains a C7, a contradiction. Thus we have Y3 ∩ Yi = ∅ for i 6= 3. Let zi ∈ Yi and
Zi = NY (zi) for i = 3, 6, then by the arguments above, we have |Zi| ≥ 5. By Claims 7,
9 and 10, we have α(Zi) ≥ 3 for i = 3, 6. By Claim 10, v2v4 /∈ E(G). Thus, noting that
G contains no C7, we have Z3 ∩ Z6 = ∅, E(Z3, Z6) = ∅ and E({v2, v4}, Z3 ∪ Z6) = ∅,
which implies that α({v2, v4}∪Z3∪Z6) ≥ 8, a contradiction. Thus we have U1∩U4 = ∅.
By the symmetry of U2 and U4, we have U1 ∩ U2 = ∅, and hence U1 ∩ (U2 ∪ U4) = ∅.

By the arguments above, U1 ∩ Ui = ∅ for i 6= 1. By Claim 11, U3 ∩ (U2 ∪ U4) = ∅.
By Claim 12, U3 ∩ U5 = ∅. Thus we have U3 ∩ Ui = ∅ for i 6= 3. Let ui ∈ Ui and
Vi = NU (ui) for i = 1, 3, then by the arguments above, we have |Vi| ≥ 5. By Claims 7,
9 and 10, we have α(Vi) ≥ 3 for i = 1, 3. By Claim 10, v2v4 /∈ E(G). Thus, noting that
G contains no C7, we have V1 ∩ V3 = ∅, E(V1, V3) = ∅ and E({v2, v4}, V1 ∪ V3) = ∅,
which implies that α({v2, v4} ∪ V1 ∪ V3) ≥ 8, a contradiction.

Claim 14. G contains no B2.

Proof. Suppose to the contrary that G contains a B2, say, v1v2v3v4 is a cycle with
diagonal v2v4. Set U = V (G)− {v1, v2, v3, v4} and Ui = NU (vi) for 1 ≤ i ≤ 4.

If E(U1, U3) 6= ∅, we assume v5 ∈ U1, v6 ∈ U3 and v5v6 ∈ E(G). Let X = {vi | 1 ≤
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i ≤ 6}, Y = V (G) − X and Yi = NY (vi) for 1 ≤ i ≤ 6. Since G contains no C7, it
is easy to get that Yi ∩ Yj = ∅ for i = 2, 4 and j 6= i, and Y5 ∩ (Y1 ∪ Y6) = ∅. Let
zi ∈ Yi for i = 2, 4, 5, Z2 = NY (z2) − {z4}, Z4 = NY (z4) − {z2} and Z5 = NY (zi).
Then by the arguments above, we have |Zi| ≥ 4 for i = 2, 4, 5. By Claims 7, 9 and
10, we have α(Zi) ≥ 2 for i = 2, 4, 5. Noting that G contains no C7, we see that
E({v1, v3}, Z2 ∪Z4 ∪Z5) = ∅, (Z2 ∪Z4)∩Z5 = ∅ and there is no edge between any two
of the three Z2, Z4 and Z5. By Claim 10, v1v3 /∈ E(G). If Z2 ∩ Z4 = ∅, then by the
arguments above, we have α({v1, v3} ∪ Z2 ∪ Z4 ∪ Z5) ≥ 8, and hence we may assume
that Z2 ∩ Z4 6= ∅. Since E(Z2, Z4) = ∅, we see that Z2 ∩ Z4 is an independent set. If
|Z2 ∩ Z4| ≥ 4, then α({v1, v3} ∪ (Z2 ∩ Z4) ∪ Z5) ≥ 8, and hence we may assume that
|Z2∩Z4| ≤ 3. In this case, we have Z ′

2 = Z2−(Z2∩Z4) 6= ∅ and Z ′
4 = Z4−(Z2∩Z4) 6= ∅.

If |Z2∩Z4| ≥ 2, then noting that E(Z2, Z4) = ∅, we have α(Z2∪Z4) ≥ 4, which implies
that α({v1, v3} ∪ (Z2 ∪ Z4) ∪ Z5) ≥ 8, a contradiction. If |Z2 ∩ Z4| = 1, then we have
|Z ′

i| ≥ 3 for i = 2, 4. By Claim 10, α(Z ′
i) ≥ 2 for i = 2, 4. Obviously, Z ′

2 ∩ Z ′
4 = ∅.

Thus we have α({v1, v3} ∪ Z ′
2 ∪ Z ′

4 ∪ Z5) ≥ 8, again a contradiction. Hence we have
E(U1, U3) = ∅.

If E(U1 ∪ U3, U2 ∪ U4) 6= ∅, we assume without loss of generality that v5 ∈ U3,
v6 ∈ U4 and v5v6 ∈ E(G). Let X = {vi | 1 ≤ i ≤ 6}, Y = V (G)−X and Yi = NY (vi)
for 1 ≤ i ≤ 6. Since G contains no C7, we have Y1 ∩ Yi = ∅ for i 6= 1, Y3 ∩ (Y2 ∪ Y5) = ∅
and Y6 ∩ (Y2 ∪Y4 ∪Y5) = ∅. By Claim 11, Y3 ∩Y4 = ∅. Let zi ∈ Yi and Zi = NY (zi) for
i = 1, 3, 6. Since v3v6 /∈ E(G) by Claim 11 and δ(G) ≥ 6, we have |Yi| ≥ 2 for i = 3, 6.
Thus we may choose z3 such that z3 6= z6. By the arguments above, we have |Z1| ≥ 5
and |Zi| ≥ 4 for i = 3, 6. By Claims 7, 9 and 10, we have α(Z1) ≥ 3 and α(Zi) ≥ 2 for
i = 3, 6. Noting that G contains no C7, we see that E({v5}, Z1∪Z3∪Z6) = ∅, Z1, Z3, Z6

are pairwise disjoint and there is no edge between any two of them. This implies that
α({v5} ∪ Z1 ∪ Z3 ∪ Z6) ≥ 8, a contradiction. Hence we have E(U1 ∪ U3, U2 ∪ U4) = ∅.

By Claims 11, 12 and 13, we have Ui ∩ Uj = ∅ for 1 ≤ i < j ≤ 4. Let ui ∈ Ui and
Vi = NU (ui) for 1 ≤ i ≤ 3. Obviously, |Vi| ≥ 5 for 1 ≤ i ≤ 3. Since G contains no C7,
E(U1, U3) = ∅ and E(U1 ∪ U3, U2 ∪ U4) = ∅, we have Vi ∩ Vj = ∅ and E(Vi, Vj) = ∅ for
1 ≤ i < j ≤ 3. By Claims 7, 9 and 10, we have α(Vi) ≥ 3 for 1 ≤ i ≤ 3, which implies
that α(∪3

i=1Vi) ≥ 9, again a contradiction.

We now begin to prove Theorem 6.

If there is some vertex v such that d(v) ≤ 8, then G′ = G − N [v] is a graph of
order at least 34. By Lemma 12 and Claim 14, we have α(G′) ≥ 7, which implies that
α(G) ≥ 8, a contradiction. Hence we have δ(G) ≥ 9.

Let v0 ∈ V (G). Since d(v0) ≥ 9, G[N(v0)] contains at least two edges for otherwise
we have α(N(v0)) ≥ 8. By Claim 14, G[N(v0)] contains no P3. Thus, G[N(v0)] contains
two independent edges, say v1v2, v3v4 ∈ E(G[N(v0)]). Set U = V (G)−{vi | 0 ≤ i ≤ 4}
and NU (vi) = Ui for 1 ≤ i ≤ 4. By Claim 11, we have E({v1, v2}, {v3, v4}) = ∅, which
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implies that |Ui| ≥ 7 for 1 ≤ i ≤ 4. By Claim 14, we have α(Ui) ≥ 4 for 1 ≤ i ≤ 4.
Since G contains no C7, we have E(U1 ∪ U2, U3 ∪ U4) = ∅. Thus, if U1 ∩ U3 = ∅ or
U2 ∩ U4 = ∅, then we have α(U1 ∪ U3) ≥ 8 or α(U2 ∪ U4) ≥ 8, and hence we may
assume a ∈ U1 ∩ U3 and b ∈ U2 ∩ U4. By Claim 14, we have a 6= b, which implies that
av1v0v2bv4v3 is a C7 in G, a contradiction.

By the arguments above, we have R(C7,K8) ≤ 43. On the other hand, since 7K6

contains no C7 and its complement contains no K8, we have R(C7,K8) ≥ 43 and hence
R(C7,K8) = 43.
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