Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99941
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLiu, Yen_US
dc.creatorZheng, Gen_US
dc.date.accessioned2023-07-26T05:49:13Z-
dc.date.available2023-07-26T05:49:13Z-
dc.identifier.urihttp://hdl.handle.net/10397/99941-
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Liu Y, Zheng G. First-Principles Calculation and Kink-Dislocation Dynamics Simulation on Dislocation Plasticity in TiZr-Based Concentrated Solid-Solution Alloys. Metals. 2023; 13(2):351 is available at https://doi.org/10.3390/met13020351.en_US
dc.subjectHigh-entropy alloysen_US
dc.subjectDislocation plasticityen_US
dc.subjectFrenkel–Kontonova modelen_US
dc.subjectFirst-principles calculationen_US
dc.subjectStacking-fault energyen_US
dc.titleFirst-principles calculation and kink-dislocation dynamics simulation on dislocation plasticity in TiZr-based concentrated solid-solution alloysen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume13en_US
dc.identifier.issue2en_US
dc.identifier.doi10.3390/met13020351en_US
dcterms.abstractThe dislocation plasticity of TiZr-based hexagonal close-packed (HCP) concentrated solid-solution alloys (CSAs) is investigated using a multiscale simulation approach combining the first-principles calculation and Frenkel–Kontonova kink-dislocation model. The first-principles calculation reveals that dislocation-mediated slip is significantly enhanced by the additions of Y and Sc in TiZrHf CSAs. The dislocation kinetics is simulated using the kink-dislocation model at mesoscopic scales, and the predicted mechanical strength of CSA is found to be consistent with experimental results. In addition to predicting the mechanical properties of CSAs accurately, the multiscale simulation approach elucidates the deformation mechanisms in CSAs at atomic scales, suggesting that the approach is robust in modeling the dislocation plasticity of CSAs.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMetals, Feb. 2023, v. 13, no. 2, 351en_US
dcterms.isPartOfMetalsen_US
dcterms.issued2023-02-
dc.identifier.scopus2-s2.0-85149235527-
dc.identifier.eissn2075-4701en_US
dc.identifier.artn351en_US
dc.description.validate202307 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Scholars Program; Otto Poon Charitable Foundationen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liu_First-Principles_Calculation_Kink-Dislocation.pdf12.39 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

102
Last Week
5
Last month
Citations as of Nov 9, 2025

Downloads

75
Citations as of Nov 9, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.