Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99726
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorOtto Poon Charitable Foundation Smart Cities Research Institute-
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorXiang, Hen_US
dc.creatorShi, Wen_US
dc.creatorFan, Wen_US
dc.creatorChen, Pen_US
dc.creatorBao, Sen_US
dc.creatorNie, Men_US
dc.date.accessioned2023-07-19T00:54:39Z-
dc.date.available2023-07-19T00:54:39Z-
dc.identifier.issn1569-8432en_US
dc.identifier.urihttp://hdl.handle.net/10397/99726-
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.rights© 2021 Published by Elsevier B.V.en_US
dc.rightsThis is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Xiang, H., Shi, W., Fan, W., Chen, P., Bao, S., & Nie, M. (2021). FastLCD: A fast and compact loop closure detection approach using 3D point cloud for indoor mobile mapping. International Journal of Applied Earth Observation and Geoinformation, 102, 102430 is available at https://doi.org/10.1016/j.jag.2021.102430.en_US
dc.subjectLoop closure detectionen_US
dc.subjectComprehensive descriptorsen_US
dc.subjectMachine learningen_US
dc.subjectLiDAR-based mobile mappingen_US
dc.titleFastLCD : a fast and compact loop closure detection approach using 3D point cloud for indoor mobile mappingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume102en_US
dc.identifier.doi10.1016/j.jag.2021.102430en_US
dcterms.abstractIn simultaneous localization and mapping (SLAM), loop closure detection is a significant yet still open problem. It contributes to construct a globally consistent and accurate map. This paper proposes a fast and compact loop closure detection method (FastLCD) based on comprehensive descriptors and machine learning to achieve reliable and precise results using 3D point cloud for indoor LiDAR mobile mapping. Comprehensive descriptors proposed in this paper encode discriminative multimodality features to describe each scan of point clouds. The specific values of descriptors of point cloud scan pairs are fed into a machine learning model. We leverage the pre-trained learning model as a classifier to distinguish whether a pair of laser scans is a loop candidate. Then, to ensure the results’ precision, a novel double-deck loop candidate verification strategy is used to reject false positives. The algorithm is evaluated on datasets of some typical indoor environments. Compared with some state-of-the-art loop closure detection algorithms, the proposed FastLCD algorithm demonstrates superior performance in precision and recall rate. Moreover, the method proposed also exhibits high time efficiency, excellent generalization performance and insensitivity to threshold changes.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of applied earth observation and geoinformation, Oct. 2021, v. 102, 102430en_US
dcterms.isPartOfInternational journal of applied earth observation and geoinformationen_US
dcterms.issued2021-10-
dc.identifier.scopus2-s2.0-85120691167-
dc.identifier.eissn1872-826Xen_US
dc.identifier.artn102430en_US
dc.description.validate202307 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextState Bureau of Surveying and Mapping; Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xiang_FastLCD_Fast_Compact.pdf3.85 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

107
Last Week
4
Last month
Citations as of Nov 10, 2025

Downloads

142
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

20
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

16
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.