Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99721
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.contributorResearch Institute for Sustainable Urban Development-
dc.creatorXu, Jen_US
dc.creatorLiu, Zen_US
dc.date.accessioned2023-07-19T00:54:37Z-
dc.date.available2023-07-19T00:54:37Z-
dc.identifier.issn1569-8432en_US
dc.identifier.urihttp://hdl.handle.net/10397/99721-
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.rights© 2022 The Hong Kong Polytechnic University. Published by Elsevier B.V.en_US
dc.rightsThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Xu, J., & Liu, Z. (2022). Enhanced all-weather precipitable water vapor retrieval from MODIS near-infrared bands using machine learning. International Journal of Applied Earth Observation and Geoinformation, 114, 103050 is available at https://doi.org/10.1016/j.jag.2022.103050.en_US
dc.subjectGlobal Positioning Systemen_US
dc.subjectMachine learningen_US
dc.subjectModerate Resolution Imagingen_US
dc.subjectSpectroradiometeren_US
dc.subjectNear-infrareden_US
dc.subjectPrecipitable water vapor retrievalen_US
dc.titleEnhanced all-weather precipitable water vapor retrieval from MODIS near-infrared bands using machine learningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume114en_US
dc.identifier.doi10.1016/j.jag.2022.103050en_US
dcterms.abstractFour novel PWV retrieval approaches based on machine learning methods are for the first time developed to estimate all-weather precipitable water vapor (PWV) from near-infrared (NIR) measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The four retrieval approaches are Back Propagation Neural Network (BPNN), Gradient Boosting Decision Tree (GBDT), Generalized Regression Neural Network (GRNN), and eXtreme Gradient Boosting (XGBoost). The transmittance, latitude, longitude, elevation, cloud, season, and solar zenith angle information, in association with the MODIS NIR PWV’s performance, are utilized. The in-situ one-year PWV data collected in 2017 from 453 Global Positioning System (GPS) sites in Australia and 214 GPS sites in China are utilized as target water vapor estimates for model training. Independent of the 2017 training data, two-year data observed in 2018–2019 in Australia and China are utilized to validate the four models’ performance. The results indicate that the retrieval algorithms can greatly improve the PWV retrieval accuracy from MODIS NIR observations under all-weather conditions, reducing the impact of clouds on NIR PWV retrieval. The new all-weather PWV estimates obtain R2 in the range of 0.83 ∼ 0.86, root-mean-square-error (RMSE) in the range of 4.71 mm ∼ 5.28 mm, and mean bias (MB) in the range of 0.18 mm ∼ 0.51 mm, significantly outperforming the official MODIS NIR PWV product (R2 = 0.31, RMSE = 12.03 mm, and MB = -3.04 mm). The reduction in RMSE is 60.85 % for BPNN, 59.68 % for GBDT, 56.69 % for GRNN, and 57.27 % for XGBoost. The new all-weather PWV results show a superior retrieval accuracy compared to the official MODIS NIR confident-clear PWV product, illustrating the effectiveness of the models. This could be because the retrieval models have considered multiple dependence parameters that affect the performance of MODIS-observed NIR PWV. The retrieval algorithms exhibit little spatial or temporal dependence and they can be applied to other regions and periods. This work provides a more accurate way to retrieve all-weather PWV estimates from satellite NIR measurements considering multiple dependence parameters – location, cloud, season, and solar zenith angle information.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of applied earth observation and geoinformation, Nov. 2022, v. 114, 103050en_US
dcterms.isPartOfInternational journal of applied earth observation and geoinformationen_US
dcterms.issued2022-11-
dc.identifier.scopus2-s2.0-85139879640-
dc.identifier.eissn1872-826Xen_US
dc.identifier.artn103050en_US
dc.description.validate202307 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Aeronautics and Space Administration; Hong Kong Polytechnic University; Research Institute for Sustainable Urban Development, Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xu_Enhanced_All-Weather_Precipitable.pdf14.35 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

116
Last Week
0
Last month
Citations as of Nov 10, 2025

Downloads

108
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

25
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

23
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.