Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99720
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorLuo, Zen_US
dc.creatorChen, Pen_US
dc.creatorShi, Wen_US
dc.creatorLi, Jen_US
dc.date.accessioned2023-07-19T00:54:36Z-
dc.date.available2023-07-19T00:54:36Z-
dc.identifier.issn1569-8432en_US
dc.identifier.urihttp://hdl.handle.net/10397/99720-
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.rights© 2022 The Authors. Published by Elsevier B.V.en_US
dc.rightsThis is an open access article under the CC BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Luo, Z., Chen, P., Shi, W., & Li, J. (2022). IDA-net: Intensity-distribution aware networks for semantic segmentation of 3D MLS point clouds in indoor corridor environments. International Journal of Applied Earth Observation and Geoinformation, 112, 102904 is available at https://doi.org/10.1016/j.jag.2022.102904.en_US
dc.subject3D MLS point clouden_US
dc.subjectSemantic segmentationen_US
dc.subjectIntensity-distribution awareen_US
dc.subjectTwo-stage embedding networken_US
dc.titleIDA-Net : intensity-distribution aware networks for semantic segmentation of 3D MLS point clouds in indoor corridor environmentsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume112en_US
dc.identifier.doi10.1016/j.jag.2022.102904en_US
dcterms.abstractSemantic segmentation of 3D mobile laser scanning point clouds is the foundational task for scene understanding in several fields. Most existing segmentation methods tend to simply stack the common point attributes, such as the coordinates and intensity, but ignore their heterogeneous. This paper presents IDA-Net, an intensity-distribution aware network that mines the uniqueness and discrepancy of these two modalities in a separate way for point cloud segmentation under indoor corridor environments. Specifically, IDA-Net consists of two key components. Firstly, an intensity-distribution aware (IDA) descriptor is proposed to mine the intensity distribution pattern. It outputs a multi-channel mask for each point to represent the intensity distribution information. Secondly, a two-stage embedding network is designed to fuse the coordinates and intensity information efficiently. It includes a guiding operation in training stage and a refining operation in testing stage. IDA-Net was evaluated on two indoor corridor areas. Experimental results show that the proposed method significantly improves the performance of segmentation. Specifically, with backbone of KPConv, IDA-Net achieves high mIoU of 90.58% and 88.94% on the above two testing areas respectively, which demonstrates the superiority of the designed IDA descriptor and two-stage embedding network.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of applied earth observation and geoinformation, Aug. 2022, v. 112, 102904en_US
dcterms.isPartOfInternational journal of applied earth observation and geoinformationen_US
dcterms.issued2022-08-
dc.identifier.scopus2-s2.0-85135397743-
dc.identifier.eissn1872-826Xen_US
dc.identifier.artn102904en_US
dc.description.validate202307 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextOtto Poon Charitable Foundation Smart Cities Research Institute; Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Luo_IDA-Net_Intensity-Distribution_Aware.pdf7.79 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

137
Last Week
1
Last month
Citations as of Nov 9, 2025

Downloads

59
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

6
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.