Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99562
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorEhteram, Men_US
dc.creatorKalantari, Zen_US
dc.creatorFerreira, CSen_US
dc.creatorChau, KWen_US
dc.creatorEmami, SMKen_US
dc.date.accessioned2023-07-14T02:49:34Z-
dc.date.available2023-07-14T02:49:34Z-
dc.identifier.issn2040-2244en_US
dc.identifier.urihttp://hdl.handle.net/10397/99562-
dc.language.isoenen_US
dc.publisherI W A Publishingen_US
dc.rights© 2022 The Authorsen_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Ehteram, M., Kalantari, Z., Ferreira, C. S., Chau, K. W., & Emami, S. M. K. (2022). Prediction of future groundwater levels under representative concentration pathway scenarios using an inclusive multiple model coupled with artificial neural networks. Journal of Water and Climate Change, 13(10), 3620-3643 is available at https://doi.org/10.2166/wcc.2022.198.en_US
dc.subjectClimate modelsen_US
dc.subjectRCP scenariosen_US
dc.subjectSoft computing modelsen_US
dc.subjectSustainable water resource managementen_US
dc.titlePrediction of future groundwater levels under representative concentration pathway scenarios using an inclusive multiple model coupled with artificial neural networksen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3620en_US
dc.identifier.epage3643en_US
dc.identifier.volume13en_US
dc.identifier.issue10en_US
dc.identifier.doi10.2166/wcc.2022.198en_US
dcterms.abstractGroundwater (GW) plays a key role in water supply in basins. As global warming and climate change affect groundwater level (GWL), it is important to predict it for planning and managing water resources. This study investigates the GWL of the Yazd-Ardakan Plain basin in Iran for the base period of 1979–2005 and predicts for periods of 2020–2059 and 2060–2099. Lagged temperature and rainfall are used as inputs to hybrid and standalone artificial neural network (ANN) models. In this study, the rat swarm algorithm (RSA), particle swarm optimisation (PSO), salp swarm algorithm (SSA), and genetic algorithm (GA) are used to adjust ANN models. The outcomes of these models are then entered into an inclusive multiple model (IMM) as an ensemble model. In this study, the output of climate models is also inserted into the IMM model to improve the estimation accuracy of temperature, rainfall, and GWL. The monthly average temperature for the base period is 12.9 °C, while average temperatures for 2020–2059 under RCP 4.5 and RCP 8.5 scenarios are 14.5 and 15.1 °C, and for 2060–2099 they are 16.41 and 18.5 °C under the same scenarios, respectively. In future periods, rainfall is low in comparison with the base period. Lagged rainfall and temperature of the base period are inserted into ANN-RSA, ANN-SSA, ANN-PSO, ANN-GA, and ANN models to predict GWL for the base period. Outputs of IMM, ANN, and the five hybrid models (ANN-RSA, ANN-SSA, ANN-PSO, and ANN-GA) indicate that root mean square errors (RMSE) are 2.12, 3.2, 4.58, 6.12, 6.98, and 7.89 m, respectively, in the testing level. It is found that GWL depletion in 2020–2059 under RCP 4.5 and RCP 8.5 scenarios are 0.60–0.88 m and 0.80–1.16 m, and in 2060–2099 under the same scenarios they are 1.49–1.97 m and 1.75–1.98 m, respectively. The results highlight the need to prevent overexploitation of GW in the Ardakan-Yazd Plain to avoid water shortages in the future.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of water and climate change, 1 Oct. 2022, v. 13, no. 10, p. 3620-3643en_US
dcterms.isPartOfJournal of water and climate changeen_US
dcterms.issued2022-10-01-
dc.identifier.scopus2-s2.0-85140892383-
dc.identifier.eissn2408-9354en_US
dc.description.validate202307 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceNot mentionen_US
dc.description.pubStatusPublisheden_US
dc.description.TAIWAP (2023) -“Subscribe to Open” since 2021en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
jwc0133620.pdf1.52 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

58
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

64
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

18
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.