Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99456
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineering-
dc.creatorXu, G-
dc.creatorChen, Y-
dc.creatorLiu, W-
dc.date.accessioned2023-07-10T03:01:32Z-
dc.date.available2023-07-10T03:01:32Z-
dc.identifier.issn2324-9935-
dc.identifier.urihttp://hdl.handle.net/10397/99456-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2022 Hong Kong Society for Transportation Studies Limited.en_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Transportmetrica A: Transport Science on 25 May 2022 (published online), available at: http://www.tandfonline.com/10.1080/23249935.2022.2077468.en_US
dc.subjectAlternate traffic restrictionen_US
dc.subjectBi-level programmingen_US
dc.subjectMulti-objective optimisationen_US
dc.subjectPark-and-ride locationen_US
dc.titleJoint optimisation of park-and-ride facility locations and alternate traffic restriction scheme under equilibrium flowsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume19-
dc.identifier.issue3-
dc.identifier.doi10.1080/23249935.2022.2077468-
dcterms.abstractAlternate traffic restriction (ATR) schemes manage traffic congestion by prohibiting a proportion of cars from entering a predetermined ATR area during specific time periods. Under the ATR scheme, Park-and-Ride (P&R) often becomes more popular as travelers can park cars at P&R facilities and avoid driving into the ATR area. This paper proposes a multi-objective bi-level model that jointly optimizes the P&R facility locations and the ATR scheme (the ATR areas and the proportion of restricted private cars). The upper-level model minimizes the total travel cost and total emission cost, and maximizes consumer surplus. The lower-level model characterizes the user equilibrium of travel modes and route choices. The non-dominated sorting genetic algorithm is adapted to solve the proposed multi-objective bi-level model, where a gradient project algorithm is used for solving the lower-level model. Numerical studies are conducted to test and illustrate the applicability of the model and algorithms.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTransportmetrica. A, Transport science, 2023, v. 19, no. 3, 2077468-
dcterms.isPartOfTransportmetrica. A, Transport science-
dcterms.issued2023-
dc.identifier.scopus2-s2.0-85131212618-
dc.identifier.eissn2324-9943-
dc.identifier.artn2077468-
dc.description.validate202307 bcvc-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2189aen_US
dc.identifier.SubFormID46948en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xu_Joint_Optimization_Facility.pdfPre-Published version2.3 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

96
Citations as of Apr 14, 2025

Downloads

155
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

6
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.