Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99431
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Xen_US
dc.creatorHu, Yen_US
dc.creatorLi, Cen_US
dc.creatorYang, Xen_US
dc.creatorJiang, Ten_US
dc.date.accessioned2023-07-10T03:01:22Z-
dc.date.available2023-07-10T03:01:22Z-
dc.identifier.issn0925-5001en_US
dc.identifier.urihttp://hdl.handle.net/10397/99431-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022en_US
dc.rightsThis version of the book chapter has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10898-022-01220-5.en_US
dc.subjectLower-order penalty methodsen_US
dc.subjectRecovery bounden_US
dc.subjectRestricted eigenvalue conditionen_US
dc.subjectSparse optimizationen_US
dc.titleSparse estimation via lower-order penalty optimization methods in high-dimensional linear regressionen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: Sparse estimation via ℓq optimization method in high-dimensional linear regressionen_US
dc.identifier.spage315en_US
dc.identifier.epage349en_US
dc.identifier.volume85en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1007/s10898-022-01220-5en_US
dcterms.abstractThe lower-order penalty optimization methods, including the ℓq minimization method and the ℓq regularization method (0 < q≤ 1) , have been widely applied to find sparse solutions of linear regression problems and gained successful applications in various mathematics and applied science fields. In this paper, we aim to investigate statistical properties of the ℓq penalty optimization methods with randomly noisy observations and a deterministic/random design. For this purpose, we introduce a general q-Restricted Eigenvalue Condition (REC) and provide its sufficient conditions in terms of several widely-used regularity conditions such as sparse eigenvalue condition, restricted isometry property, and mutual incoherence property. By virtue of the q-REC, we exhibit the ℓ2 recovery bounds of order O(ϵ2) and O(λ22-qs) for the ℓq minimization method and the ℓq regularization method, respectively, with high probability for either deterministic or random designs. The results in this paper are nonasymptotic and only assume the weak q-REC. The preliminary numerical results verify the established statistical properties and demonstrate the advantages of the ℓq penalty optimization methods over existing sparse optimization methods.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of global optimization, Feb. 2023, v. 85, no. 2, , p. 315-349en_US
dcterms.isPartOfJournal of global optimizationen_US
dcterms.issued2023-02-
dc.identifier.eissn1573-2916en_US
dc.description.validate202307 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2176-
dc.identifier.SubFormID46890-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Sparse_Estimation_Optimization.pdfPre-Published version977.83 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

80
Citations as of Apr 14, 2025

Downloads

66
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

2
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

3
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.