Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99429
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorZhang, Len_US
dc.creatorWang, Jen_US
dc.creatorLi, Cen_US
dc.creatorYang, Xen_US
dc.date.accessioned2023-07-10T03:01:22Z-
dc.date.available2023-07-10T03:01:22Z-
dc.identifier.issn0233-1934en_US
dc.identifier.urihttp://hdl.handle.net/10397/99429-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2022 Informa UK Limited, trading as Taylor & Francis Groupen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Optimization on 12 Dec 2022 (Published online), available online: http://www.tandfonline.com/10.1080/02331934.2022.2154606.en_US
dc.subjectConvergence rete analysisen_US
dc.subjectHölderian type error bounden_US
dc.subjectRelaxed CQ algorithmen_US
dc.subjectSplit feasibility problemen_US
dc.titleConvergence rate of the relaxed CQ algorithm under Hölderian type error bound propertyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1285en_US
dc.identifier.epage1301en_US
dc.identifier.volume73en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1080/02331934.2022.2154606en_US
dcterms.abstractThe relaxed CQ algorithm is one of the most important algorithms for solving the split feasibility problem. We study the issue of strong convergence of the relaxed CQ algorithm in Hilbert spaces together with estimates on the convergence rate. Under a kind of Hölderian type bounded error bound property, strong convergence of the relaxed CQ algorithm is established. Furthermore, qualitative estimates on the convergence rate is presented. In particular, for the case when the involved exponent is equal to 1, the linear convergence of the relaxed CQ algorithm is established. Finally, numerical experiments are performed to show the convergence property of the relaxed CQ algorithm for the compressed sensing problem.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationOptimization, 2024, v. 73, no. 4, p. 1285-1301en_US
dcterms.isPartOfOptimizationen_US
dcterms.issued2024-
dc.identifier.eissn1029-4945en_US
dc.description.validate202307 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2176-
dc.identifier.SubFormID46887-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Convergence_Rate_Relaxed.pdfPre-Published version1.16 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

143
Last Week
3
Last month
Citations as of Dec 21, 2025

Downloads

118
Citations as of Dec 21, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.