Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99302
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Fashion and Textilesen_US
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributorResearch Institute for Intelligent Wearable Systemsen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorHu, Hen_US
dc.creatorWang, Zen_US
dc.creatorLuo, Yen_US
dc.creatorWang, Pen_US
dc.creatorZhang, Yen_US
dc.creatorHuang, Qen_US
dc.creatorZheng, Zen_US
dc.date.accessioned2023-07-05T08:36:49Z-
dc.date.available2023-07-05T08:36:49Z-
dc.identifier.issn0040-6090en_US
dc.identifier.urihttp://hdl.handle.net/10397/99302-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2023 Elsevier B.V. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Hu, Hong; Wang, Ziran; Luo, Yufeng; Wang, Pengwei; Zhang, Yaokang; Huang, Qiyao; Zheng, Zijian(2023). Quantitative characterization of thin-film cracking behavior enabled by one-step asymmetrical bending. Thin Solid Films, 779, 139920 is available at https://doi.org/10.1016/j.tsf.2023.139920.en_US
dc.subjectAsymmetrical bendingen_US
dc.subjectCracking behavioren_US
dc.subjectFlexible electronicsen_US
dc.subjectIn-situ characterizationen_US
dc.subjectThin-filmen_US
dc.titleQuantitative characterization of thin-film cracking behavior enabled by one-step asymmetrical bendingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume779en_US
dc.identifier.doi10.1016/j.tsf.2023.139920en_US
dcterms.abstractQuantitative characterization of crack behavior in thin-film materials is a fundamental issue in solid mechanics and is of necessity for the development of high-performance flexible electronics. However, such analysis largely relies on the complicated in-situ microscopy technique and the operational skills of experienced researchers, thus leading to difficulties in its widespread applications. To address this challenge, we report herein a facile and efficient characterization method based on the asymmetrical bending strategy to achieve the quantitative analysis of the crack features in thin-film materials without any need for specialized testing instruments. The key to this method is to bend two unparallel edges of the trapezoid-shaped thin film/substrate to form an asymmetrical configuration, in which the local bending radius changes linearly along the bending axis. As such, a large number of bending radii can be achieved on one single sample in one experiment, which significantly simplifies the process of quantitatively relating crack features to mechanical deformation. As a proof-of-concept demonstration, we employ this method for the one-step in-situ investigation of the crack behavior of the Cu film on a polymeric substrate.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationThin solid films, 31 Aug. 2023, v. 779, 139920en_US
dcterms.isPartOfThin solid filmsen_US
dcterms.issued2023-08-31-
dc.identifier.scopus2-s2.0-85161709566-
dc.identifier.eissn1879-2731en_US
dc.identifier.artn139920en_US
dc.description.validate202307 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2207-
dc.identifier.SubFormID46998-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hu_Quantitative_Characterization_Thin-film.pdfPre-Published version2.89 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

120
Last Week
16
Last month
Citations as of Aug 17, 2025

SCOPUSTM   
Citations

2
Citations as of Aug 29, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Aug 28, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.