Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99300
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.contributorMainland Development Officeen_US
dc.contributorOtto Poon Charitable Foundation Smart Cities Research Instituteen_US
dc.creatorWang, Sen_US
dc.creatorZhuge, Cen_US
dc.creatorShao, Cen_US
dc.creatorWang, Pen_US
dc.creatorYang, Xen_US
dc.creatorWang, Sen_US
dc.date.accessioned2023-07-05T08:36:48Z-
dc.date.available2023-07-05T08:36:48Z-
dc.identifier.issn0306-2619en_US
dc.identifier.urihttp://hdl.handle.net/10397/99300-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2023 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Wang, Shengyou; Zhuge, Chengxiang; Shao, Chunfu; Wang, Pinxi; Yang, Xiong; Wang, Shiqi (2023). Short-term electric vehicle charging demand prediction: A deep learning approach. Applied Energy, 340, 121032 is available at https://doi.org/10.1016/j.apenergy.2023.121032.en_US
dc.subjectCharging demand predictionen_US
dc.subjectElectric vehicleen_US
dc.subjectLong short-term memory neural networken_US
dc.subjectTrajectory dataen_US
dc.titleShort-term electric vehicle charging demand prediction : a deep learning approachen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume340en_US
dc.identifier.doi10.1016/j.apenergy.2023.121032en_US
dcterms.abstractShort-term prediction of the Electric Vehicle (EV) charging demand is of great importance to the operation of EV fleets and charging stations. This paper develops a Long Short-Term Memory (LSTM) neural network to predict the EV charging demand at the station level for the next few hours (e.g., 1–5 h), using a unique trajectory dataset containing over 76,000 private EVs in Beijing in January 2018. To explore the performance of the LSTM model, we set up four scenarios by 1) comparing LSTM against two typical time series prediction models, i.e., the Auto-Regressive Moving Average model (ARIMA), and the Multiple Layer Perceptron model (MLP), 2) and investigating how different input data structures, sample sizes, and time spans and intervals would influence model accuracy. The results suggest that the LSTM model outperformed the ARIMA, and MLP models, and their MAPE1 values are 6.83 %, 21.58 %, and 18.31 %, respectively. In addition, we find that the time span and interval tend to be more influential to the LSTM model's prediction accuracy than input data structures, and sample sizes. In general, the LSTM model with a shorter time span or interval (e.g., 1 h) would perform better.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied energy, 15 June 2023, v. 340, 121032en_US
dcterms.isPartOfApplied energyen_US
dcterms.issued2023-06-15-
dc.identifier.scopus2-s2.0-85151648626-
dc.identifier.eissn1872-9118en_US
dc.identifier.artn121032en_US
dc.description.validate202307 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2204-
dc.identifier.SubFormID46995-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (52002345); RISUD Joint Research Fund (Project ID: P0042828); Funding Support to Small Projects (Project ID: P0038213); SCRI IRF-SC (Project ID: P0041230)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Short-Term_Electric_Vehicle.pdfPre-Published version4.81 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

115
Last Week
20
Last month
Citations as of Aug 17, 2025

SCOPUSTM   
Citations

65
Citations as of Aug 29, 2025

WEB OF SCIENCETM
Citations

46
Citations as of Aug 28, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.