Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99271
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorTang, Len_US
dc.creatorLi, Yen_US
dc.creatorBao, Qen_US
dc.creatorHu, Wen_US
dc.creatorWang, Qen_US
dc.creatorSu, Zen_US
dc.creatorYue, Den_US
dc.date.accessioned2023-07-04T08:29:59Z-
dc.date.available2023-07-04T08:29:59Z-
dc.identifier.issn0263-2241en_US
dc.identifier.urihttp://hdl.handle.net/10397/99271-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2023 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Tang, L., Li, Y., Bao, Q., Hu, W., Wang, Q., Su, Z., & Yue, D. (2023). Quantitative identification of damage in composite structures using sparse sensor arrays and multi-domain-feature fusion of guided waves. Measurement, 208, 112482 is available at https://doi.org/10.1016/j.measurement.2023.112482.en_US
dc.subjectLamb waveen_US
dc.subjectComposite structuresen_US
dc.subjectSparse sensor arrayen_US
dc.subjectQuantitative classificationen_US
dc.subjectSupport vector machine (SVM)en_US
dc.titleQuantitative identification of damage in composite structures using sparse sensor arrays and multi-domain-feature fusion of guided wavesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume208en_US
dc.identifier.doi10.1016/j.measurement.2023.112482en_US
dcterms.abstractDamage detection techniques using Lamb waves have shown excellent capabilities in the diagnosis of composite structures. However, structural health monitoring of composite structures is challenging, especially for damage classification. This study proposes a machine learning-based method with a sparse sensor array to achieve quantitative classification of the damage location and severity on a composite plate. First, multi features extraction is used to construct a support vector machine (SVM) damage localization model. Second, optimal path extraction combined with principal component analysis (PCA) is used to construct an SVM model for classification. To reduce the operational burden of structures, the sparse array is employed. To improve the damage classification accuracy, Fisher clustering is proposed to extract the optimal detection path. Then, PCA is used to achieve data fusion. Experimental results on a glass fiber-reinforced epoxy composite laminate plate demonstrate that the proposed technique can accurately locate and classify the quantitative artificial damage.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMeasurement : Journal of the International Measurement Confederation, 28 Feb. 2023, v. 208, 112482en_US
dcterms.isPartOfMeasurement : Journal of the International Measurement Confederationen_US
dcterms.issued2023-02-
dc.identifier.artn112482en_US
dc.description.validate202306 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2152, a2143b-
dc.identifier.SubFormID46801, 46769-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tang_Quantitative_Identification_Damage.pdfPre-Published version8 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

88
Citations as of Apr 14, 2025

Downloads

1
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

15
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

28
Citations as of Mar 6, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.