Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99266
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorFan, Yen_US
dc.creatorJiang, Ben_US
dc.creatorYan, Ten_US
dc.creatorZhang, Yen_US
dc.date.accessioned2023-07-04T08:29:57Z-
dc.date.available2023-07-04T08:29:57Z-
dc.identifier.issn0319-5724en_US
dc.identifier.urihttp://hdl.handle.net/10397/99266-
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.rights© 2022 The Authors. The Canadian Journal of Statistics/La revue canadienne de statistique published by Wiley Periodicals LLC on behalf of Statistical Society of Canada / Société statistique du Canada.en_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use,distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Fan, Y., Jiang, B., Yan, T. and Zhang, Y. (2023), Asymptotic theory in bipartite graph models with a growing number of parameters. Can J Statistics, 51: 919-942 is available at https://dx.doi.org/10.1002/cjs.11735.en_US
dc.subjectAsymptotic propertiesen_US
dc.subjectBipartite graphsen_US
dc.subjectMoment estimationen_US
dc.subjectNode degreesen_US
dc.titleAsymptotic theory in bipartite graph models with a growing number of parametersen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage919en_US
dc.identifier.epage942en_US
dc.identifier.volume51en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1002/cjs.11735en_US
dcterms.abstractAffiliation networks contain a set of actors and a set of events, where edges denote the affiliation relationships between actors and events. Here, we introduce a class of affiliation network models for modelling the degree heterogeneity, where two sets of degree parameters are used to measure the activeness of actors and the popularity of events, respectively. We develop the moment method to infer these degree parameters. We establish a unified theoretical framework in which the consistency and asymptotic normality of the moment estimator hold as the numbers of actors and events both go to infinity. We apply our results to several popular models with weighted edges, including generalized (Formula presented.) -, Poisson and Rayleigh models. Simulation studies and a realistic example that involves the Poisson model provide concrete evidence that supports our theoretical findings.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCanadian journal of statistics, Dec. 2023, v. 51, no. 4, p. 919-942en_US
dcterms.isPartOfCanadian journal of statisticsen_US
dcterms.issued2023-12-
dc.identifier.scopus2-s2.0-85140376703-
dc.identifier.eissn1708-945Xen_US
dc.description.validate202306 bcwwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2149a-
dc.identifier.SubFormID46789-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Fan_Asymptotic_Theory_Bipartite.pdf1.89 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

166
Last Week
1
Last month
Citations as of Nov 9, 2025

Downloads

73
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.