Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99247
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorMainland Development Officeen_US
dc.creatorYang, Jen_US
dc.creatorSu, Yen_US
dc.creatorLiao, Yen_US
dc.creatorZhou, Pen_US
dc.creatorXu, Len_US
dc.creatorSu, Zen_US
dc.date.accessioned2023-07-04T08:29:45Z-
dc.date.available2023-07-04T08:29:45Z-
dc.identifier.issn1475-9217en_US
dc.identifier.urihttp://hdl.handle.net/10397/99247-
dc.language.isoenen_US
dc.publisherSAGE Publicationsen_US
dc.rightsThis is the accepted version of the publication Yang, J., Su, Y., Liao, Y., Zhou, P., Xu, L., & Su, Z. (2022). Ultrasound tomography for health monitoring of carbon fibre–reinforced polymers using implanted nanocomposite sensor networks and enhanced reconstruction algorithm for the probabilistic inspection of damage imaging. Structural Health Monitoring, 21(3), 1110-1122 Copyright © The Author(s) 2021. DOI: 10.1177/14759217211023930.en_US
dc.subjectCarbon fibre–reinforced polymersen_US
dc.subjectNanocomposite sensoren_US
dc.subjectStructural health monitoringen_US
dc.subjectUltrasound tomographyen_US
dc.titleUltrasound tomography for health monitoring of carbon fibre–reinforced polymers using implanted nanocomposite sensor networks and enhanced reconstruction algorithm for the probabilistic inspection of damage imagingen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Ultrasound Tomography for Health Monitoring of CFRPs Using Implanted Nanocomposite Sensor Networks and Enhanced RAPID Imagingen_US
dc.identifier.spage1110en_US
dc.identifier.epage1122en_US
dc.identifier.volume21en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1177/14759217211023930en_US
dcterms.abstractIrrespective of the popularity and demonstrated effectiveness of ultrasound tomography (UT) for damage evaluation, reconstruction of a precise tomographic image can only be guaranteed when a dense transducer network is used. However, a network using transducers such as piezoelectric wafers integrated with the structure under inspection unavoidably lowers local material strength and consequently degrades structural integrity. With this motivation, an implantable, nanocomposite-inspired, piezoresistive sensor network is developed for implementing in situ UT-based structural health monitoring of carbon fibre–reinforced polymer (CFRP) laminates. Individual sensors in the network are formulated with graphene nanosheets and polyvinylpyrrolidone, fabricated using a spray deposition process and circuited via highly conductive carbon nanotube fibres as wires, to form a dense sensor network. Sensors faithfully respond to ultrasound signals of megahertz. With ignorable intrusion to the host composites, the implanted sensor network, in conjunction with a UT approach that is enhanced by a revamped reconstruction algorithm for the probabilistic inspection of damage–based imaging algorithm, has proven capability of accurately imaging anomaly in CFRP laminates and continuously monitoring structural health status, while not at the cost of sacrificing the composites’ original integrity.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationStructural health monitoring, May 2023, v. 21, no. 3, p. 1110-1122en_US
dcterms.isPartOfStructural health monitoringen_US
dcterms.issued2023-05-
dc.identifier.scopus2-s2.0-85107417586-
dc.identifier.eissn1741-3168en_US
dc.description.validate202306 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2143a-
dc.identifier.SubFormID46761-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yang_Ultrasound_Tomography_Health.pdfPre-Published version2.33 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

63
Citations as of Apr 14, 2025

Downloads

104
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

8
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

7
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.