Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99223
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Fashion and Textilesen_US
dc.contributorDepartment of Applied Physicsen_US
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorHu, Hen_US
dc.creatorGuo, Xen_US
dc.creatorZhang, Yen_US
dc.creatorChen, Zen_US
dc.creatorWang, Len_US
dc.creatorGao, Yen_US
dc.creatorWang, Zen_US
dc.creatorZhang, Yen_US
dc.creatorWang, Wen_US
dc.creatorRong, Men_US
dc.creatorLiu, Gen_US
dc.creatorHuang, Qen_US
dc.creatorZhu, Yen_US
dc.creatorZheng, Zen_US
dc.date.accessioned2023-07-04T08:24:55Z-
dc.date.available2023-07-04T08:24:55Z-
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://hdl.handle.net/10397/99223-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2023 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsnano.2c12269.en_US
dc.subjectFlexible electronicsen_US
dc.subjectInterlayeren_US
dc.subjectStrain toleranceen_US
dc.subjectYield strainen_US
dc.subjectYoung’s modulusen_US
dc.titleElasto-plastic design of ultrathin interlayer for enhancing strain tolerance of flexible electronicsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3921en_US
dc.identifier.epage3930en_US
dc.identifier.volume17en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1021/acsnano.2c12269en_US
dcterms.abstractThe ability to tolerate large strains during various degrees of deformation is a core issue in the development of flexible electronics. Commonly used strategies nowadays to enhance the strain tolerance of thin film devices focus on the optimization of the device architecture and the increase of bonding at the materials interface. In this paper, we propose a strategy, namely elasto-plastic design of an ultrathin interlayer, to boost the strain tolerance of flexible electronics. We demonstrate that insertion of an ultrathin, stiff (high Young’s modulus) and elastic (high yield strain) interlayer between an upper rigid film/device and a soft substrate, regardless of the substrate thickness or the interfacial bonding, can significantly reduce the actual strain applied on the film/device when the substrate is bent. Being independent of existing strategies, the elasto-plastic design strategy offers an effective method to enhance the device flexibility without redesigning the device structure or altering the material interface.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS nano, 28 Feb. 2023, v. 17, no. 4, p. 3921-3930en_US
dcterms.isPartOfACS nanoen_US
dcterms.issued2023-02-28-
dc.identifier.scopus2-s2.0-85148103647-
dc.identifier.pmid36762695-
dc.identifier.eissn1936-086Xen_US
dc.description.validate202307 bcwhen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2207-
dc.identifier.SubFormID47010-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hu_Elasto-Plastic_Design_Ultrathin.pdfPre-Published version1.85 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

144
Last Week
0
Last month
Citations as of Nov 30, 2025

Downloads

201
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

27
Citations as of Aug 14, 2025

WEB OF SCIENCETM
Citations

39
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.