Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99212
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorLiu, Ten_US
dc.creatorWei, Qen_US
dc.creatorCai, Sen_US
dc.creatorHe, Ben_US
dc.creatorSu, Zen_US
dc.creatorZhang, Zen_US
dc.creatorZhang, Yen_US
dc.creatorZhou, Hen_US
dc.creatorWang, Gen_US
dc.creatorHuang, Yen_US
dc.creatorRen, Jen_US
dc.creatorZhou, Yen_US
dc.creatorXing, Gen_US
dc.date.accessioned2023-07-03T06:16:18Z-
dc.date.available2023-07-03T06:16:18Z-
dc.identifier.issn0897-4756en_US
dc.identifier.urihttp://hdl.handle.net/10397/99212-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2022 The Authors. Published by American Chemical Societyen_US
dc.rightsThis work is licensed under the CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Liu, T., Wei, Q., Cai, S., He, B., Su, Z., Zhang, Z., ... & Xing, G. (2022). Self-Assembled Bilayer Microstructure Improves Quasi-2D Perovskite Light-Emitting Diodes. Chemistry of Materials, 34(23), 10435-10442 is available at https://doi.org/10.1021/acs.chemmater.2c02340.en_US
dc.titleSelf-assembled bilayer microstructure improves quasi-2D perovskite light-emitting diodesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage10435en_US
dc.identifier.epage10442en_US
dc.identifier.volume34en_US
dc.identifier.issue23en_US
dc.identifier.doi10.1021/acs.chemmater.2c02340en_US
dcterms.abstractMetal halide perovskites with quasi-2D crystal structures have shown excellent electroluminescent properties due to the inherently confined charge diffusion and efficient radiative recombination. But quasi-2D perovskite films can exhibit complex phase characteristics that need to be tailored for achieving high-performance light-emitting diodes (LEDs). Here, we report a unique quasi-2D perovskite thin film structure featuring a 3D perovskite bottom sublayer underneath a mixed 2D-3D perovskite composite upper sublayer, as imaged by low-dose scanning transmission electron microscopy. We demonstrate that the incorporation of a potassium bromide additive can trigger the self-assembly of multiphase perovskite grains toward this bilayer microstructure, probably due to its ability to create heterogeneous nucleation templates for the crystallization of 3D perovskite grains on the precursor-substrate bottom interface. The external quantum efficiency of quasi-2D perovskite LEDs is significantly improved by this bilayer film microstructure. By probing the carrier dynamics using transient absorption spectroscopy, we attribute the LED performance enhancement to the accelerated carrier transfer and recombination across the bilayer film microstructure.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationChemistry of materials, 13 Dec. 2022, v. 34, no. 23, p. 10435-10442en_US
dcterms.isPartOfChemistry of materialsen_US
dcterms.issued2022-12-13-
dc.identifier.scopus2-s2.0-85141958905-
dc.description.validate202306 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2139-
dc.identifier.SubFormID46747-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
acs.chemmater.2c02340.pdf4.91 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

117
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

103
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.