Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99195
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.creatorShu, Jen_US
dc.creatorSong, Men_US
dc.creatorWang, Ben_US
dc.creatorYang, Jen_US
dc.creatorZhu, Sen_US
dc.date.accessioned2023-07-03T06:16:10Z-
dc.date.available2023-07-03T06:16:10Z-
dc.identifier.issn2472-5854en_US
dc.identifier.urihttp://hdl.handle.net/10397/99195-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2022 “IISE”en_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in IISE Transactions on 14 Jun 2022 (published online), available at: http://www.tandfonline.com/10.1080/24725854.2022.2074577.en_US
dc.subjectChance-constrained stochastic programmingen_US
dc.subjectHumanitarian relief network designen_US
dc.subjectResponsiveness maximizationen_US
dc.titleHumanitarian relief network design : responsiveness maximization and a case study of Typhoon Rammasunen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage301en_US
dc.identifier.epage313en_US
dc.identifier.volume55en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1080/24725854.2022.2074577en_US
dcterms.abstractIn this article, we study a humanitarian relief network design problem, where the demand for relief supplies in each affected area is uncertain and can be met by more than one relief facility. Given a certain cost budget, we simultaneously optimize the decisions of relief facility location, inventory pre-positioning, and relief facility to affected area assignment so as to maximize the responsiveness. The problem is formulated as a chance-constrained stochastic programming model in which a joint chance constraint is utilized to measure the responsiveness of the humanitarian relief network. We approximate the proposed model by another model with chance constraints, which can be solved based on two settings of the demand information in each affected area: (i) the demand distribution is given; and (ii) the partial demand information, e.g., the mean, the variance, and the support, is given. We use a case study of the 2014 Typhoon Rammasun to illustrate the application of the model. Computational results demonstrate the effectiveness of the solution approaches and show that the chance-constrained stochastic programming models are superior to the deterministic model for humanitarian relief network design.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIISE transactions, 2023, v. 55, no. 3, p. 301-313en_US
dcterms.isPartOfIISE transactionsen_US
dcterms.issued2023-
dc.identifier.scopus2-s2.0-85131864545-
dc.identifier.eissn2472-5862en_US
dc.description.validate202306 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2133-
dc.identifier.SubFormID46729-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Shu_Humanitarian_Relief_Network.pdfPre-Published version542.77 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

101
Citations as of Apr 14, 2025

Downloads

221
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

16
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

11
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.