Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/99187
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Civil and Environmental Engineering | en_US |
| dc.creator | Li, P | en_US |
| dc.creator | Yin, JH | en_US |
| dc.creator | Yin, ZY | en_US |
| dc.creator | Chen, Z | en_US |
| dc.date.accessioned | 2023-07-03T06:16:06Z | - |
| dc.date.available | 2023-07-03T06:16:06Z | - |
| dc.identifier.issn | 0266-352X | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/99187 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.rights | © 2022 Elsevier Ltd. All rights reserved. | en_US |
| dc.rights | This is the preprint version of the following article: Li, P., Yin, J. H., Yin, Z. Y., & Chen, Z. (2023). One–dimensional nonlinear finite strain analysis of self–weight consolidation of soft clay considering creep. Computers and Geotechnics, 153, 105081, which is available at https://doi.org/10.1016/j.compgeo.2022.105081. | en_US |
| dc.subject | Finite strain | en_US |
| dc.subject | Creep | en_US |
| dc.subject | Soft clay | en_US |
| dc.subject | Self–weight consolidation | en_US |
| dc.subject | Viscoplasticity | en_US |
| dc.subject | Permeability | en_US |
| dc.title | One–dimensional nonlinear finite strain analysis of self–weight consolidation of soft clay considering creep | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 153 | en_US |
| dc.identifier.doi | 10.1016/j.compgeo.2022.105081 | en_US |
| dcterms.abstract | Creep as an intrinsic property of clay is non–negligible in predicting ground settlements in land reclamation construction and foundations on reclaimed land and soft soils, but it is unfortunately difficult to characterize in current self–weight consolidation analysis. This paper develops a one–dimensional (1D) finite strain consolidation model to take into account the creep of soft clay, particularly during the early stages of reclamation construction, mainly in a self-weight consolidation process. In this model, the Yin–Graham 1D Elastic Visco-Plastic (EVP) model is first extended for modelling self-weight finite strain consolidation of soft clays to describe the creep of soil skeleton under extremely high water content. The Darcian and non-Darcian flow, nonlinear compressibility and permeability of soft clays with a huge variety of water content are also considered. Governing partial differential equations using the EVP model are derived. These nonlinear partial differential equations are solved using the Crank–Nicholson finite difference method. Three case studies involving a wide range of initial void ratio values are simulated, which show that the present model, with more realistic consideration of creep feature of clays than previous ones, can capture the self-weight consolidation process well when compared with physical model test results. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Computers and geotechnics, Jan. 2023, v. 153, 105081 | en_US |
| dcterms.isPartOf | Computers and geotechnics | en_US |
| dcterms.issued | 2023-01 | - |
| dc.identifier.eissn | 1873-7633 | en_US |
| dc.identifier.artn | 105081 | en_US |
| dc.description.validate | 202306 bckw | en_US |
| dc.description.oa | Author’s Original | en_US |
| dc.identifier.FolderNumber | a2123c | - |
| dc.identifier.SubFormID | 46714 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | Green (AO) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Li_One–Dimensional_Nonlinear_Finite.pdf | Preprint version | 4.76 MB | Adobe PDF | View/Open |
Page views
133
Citations as of Oct 6, 2025
Downloads
101
Citations as of Oct 6, 2025
SCOPUSTM
Citations
10
Citations as of Jun 21, 2024
WEB OF SCIENCETM
Citations
11
Citations as of Oct 10, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



