Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99149
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorWang, ZAen_US
dc.creatorYang, Aen_US
dc.creatorZhao, Ken_US
dc.date.accessioned2023-06-26T01:17:29Z-
dc.date.available2023-06-26T01:17:29Z-
dc.identifier.issn0167-2789en_US
dc.identifier.urihttp://hdl.handle.net/10397/99149-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Wang, Z. A., Yang, A., & Zhao, K. (2023). Wave propagation and stabilization in the Boussinesq–Burgers system. Physica D: Nonlinear Phenomena, 447, 133687 is available at https://doi.org/10.1016/j.physd.2023.133687.en_US
dc.subjectBoussinesq–Burgers equationsen_US
dc.subjectExistenceen_US
dc.subjectStabilityen_US
dc.subjectTraveling wave solutionen_US
dc.titleWave propagation and stabilization in the Boussinesq–Burgers systemen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume447en_US
dc.identifier.doi10.1016/j.physd.2023.133687en_US
dcterms.abstractThis paper considers the existence and stability of traveling wave solutions of the Boussinesq–Burgers system describing the propagation of bores. Assuming the fluid is weakly dispersive, we establish the existence of three different wave profiles by the geometric singular perturbation theory alongside phase plane analysis. We further employ the method of weighted energy estimates to prove the nonlinear asymptotic stability of the traveling wave solutions against small perturbations. The technique of taking antiderivative is utilized to integrate perturbation functions because of the conservative structure of the Boussinesq–Burgers system. Using a change of variable to deal with the dispersion term, we perform numerical simulations for the Boussinesq–Burgers system to showcase the generation and propagation of various wave profiles in both weak and strong dispersions. The numerical simulations not only confirm our analytical results, but also illustrate that the Boussinesq–Burgers system can generate numerous propagating wave profiles depending on the profiles of initial data and the intensity of fluid dispersion, where in particular the propagation of bores can be generated from the system in the case of strong dispersion.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysica D. Nonlinear phenomena, May 2023, v. 447, 133687en_US
dcterms.isPartOfPhysica D. Nonlinear phenomenaen_US
dcterms.issued2023-05-
dc.identifier.scopus2-s2.0-85148691111-
dc.identifier.artn133687en_US
dc.description.validate202306 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2120-
dc.identifier.SubFormID46690-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0167278923000416-main.pdf1.26 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

73
Citations as of Apr 14, 2025

Downloads

50
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Jun 20, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.