Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99115
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorCao, Yen_US
dc.creatorRai, Aen_US
dc.creatorSandeep, RBen_US
dc.creatorYe, Jen_US
dc.date.accessioned2023-06-16T07:07:58Z-
dc.date.available2023-06-16T07:07:58Z-
dc.identifier.issn0178-4617en_US
dc.identifier.urihttp://hdl.handle.net/10397/99115-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00453-021-00891-y.en_US
dc.subjectKernelizationen_US
dc.subjectDiamond-free graphen_US
dc.subjectH-free editingen_US
dc.subjectGraph modification problemen_US
dc.titleA polynomial kernel for diamond-free editingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage197en_US
dc.identifier.epage215en_US
dc.identifier.volume84en_US
dc.identifier.doi10.1007/s00453-021-00891-yen_US
dcterms.abstractGiven a fixed graph H, the H-free editing problem asks whether we can edit at most k edges to make a graph contain no induced copy of H. We obtain a polynomial kernel for this problem when H is a diamond. The incompressibility dichotomy for H being a 3-connected graph and the classical complexity dichotomy suggest that except for H being a complete/empty graph, H-free editing problems admit polynomial kernels only for a few small graphs H. Therefore, we believe that our result is an essential step toward a complete dichotomy on the compressibility of H-free editing. Additionally, we give a cubic-vertex kernel for the diamond-free edge deletion problem, which is far simpler than the previous kernel of the same size for the problem.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAlgorithmica, Jan. 2022, v. 84, p. 197-215en_US
dcterms.isPartOfAlgorithmicaen_US
dcterms.issued2022-01-
dc.identifier.isiWOS:000720697700001-
dc.identifier.eissn1432-0541en_US
dc.description.validate202306 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2115-
dc.identifier.SubFormID46647-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Cao_Polynomial_Kernel_Diamond-free.pdfPre-Published version464.86 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

89
Citations as of Apr 14, 2025

Downloads

35
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

6
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.