Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99112
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorZou, Men_US
dc.creatorWang, Zen_US
dc.creatorWang, Jen_US
dc.creatorCao, Yen_US
dc.date.accessioned2023-06-16T07:07:31Z-
dc.date.available2023-06-16T07:07:31Z-
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://hdl.handle.net/10397/99112-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 Elsevier B.V. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Zou, M., Wang, Z., Wang, J., & Cao, Y. (2022). End vertices of graph searches on bipartite graphs. Information Processing Letters, 173, 106176 is available at https://dx.doi.org/10.1016/j.ipl.2021.106176.en_US
dc.subjectGraph algorithmsen_US
dc.subjectLexicographic depth-first searchen_US
dc.subjectMaximum cardinality searchen_US
dc.titleEnd vertices of graph searches on bipartite graphsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume173en_US
dc.identifier.doi10.1016/j.ipl.2021.106176en_US
dcterms.abstractFor a graph search algorithm, the end vertex problem is concerned with which vertices of a graph can be the last visited by this algorithm. We show that for both lexicographic depth-first search and maximum cardinality search, the end vertex problem is NP-complete on bipartite graphs, even if the maximum degree of the graph is bounded.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInformation processing letters, Jan. 2022, v. 173, 106176en_US
dcterms.isPartOfInformation processing lettersen_US
dcterms.issued2022-01-
dc.identifier.isiWOS:000701784700005-
dc.identifier.artn106176en_US
dc.description.validate202306 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2115-
dc.identifier.SubFormID46650-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zou_End_Vertices_Graph.pdfPre-Published version768.75 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

119
Last Week
4
Last month
Citations as of Nov 9, 2025

Downloads

105
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

3
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

2
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.