Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99074
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHu, Yen_US
dc.creatorTang, Sen_US
dc.creatorXu, ZQen_US
dc.date.accessioned2023-06-14T01:00:08Z-
dc.date.available2023-06-14T01:00:08Z-
dc.identifier.issn2367-0126en_US
dc.identifier.urihttp://hdl.handle.net/10397/99074-
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rights© Shandong University and AIMS, LLCen_US
dc.rightsThis article has been published in a revised form in Probability, Uncertainty and Quantitative Risk https://www.aimsciences.org/puqr. This version is free to download for private research and study only. Not for redistribution, resale or use in derivative works.en_US
dc.subjectExpected path constrainten_US
dc.subjectOptimal stochastic controlen_US
dc.subjectReflected FBSDEen_US
dc.subjectStochastic maximum principleen_US
dc.titleOptimal control of SDEs with expected path constraints and related constrained FBSDEsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage 365en_US
dc.identifier.epage384en_US
dc.identifier.volume en_US
dc.identifier.issue en_US
dc.identifier.doi10.3934/puqr.2022020en_US
dcterms.abstractIn this paper, we consider optimal control of stochastic differential equations subject to an expected path constraint. The stochastic maximum principle is given for a general optimal stochastic control in terms of constrained FBSDEs. In particular, the compensated process in our adjoint equation is deterministic, which seems to be new in the literature. For the typical case of linear stochastic systems and quadratic cost functionals (i.e., the so-called LQ optimal stochastic control), a verification theorem is established, and the existence and uniqueness of the constrained reflected FBSDEs are also given.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProbability uncertainty and quantitative risk, Dec. 2022, v. 7, no. 4, p. 365-384en_US
dcterms.isPartOfProbability uncertainty and quantitative risken_US
dcterms.issued2022-12-
dc.identifier.scopus2-s2.0-85141417936-
dc.identifier.artn en_US
dc.description.validate202306 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2099; a3419b-
dc.identifier.SubFormID46603; 50097-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextLebesgue Center of Mathematics; ANR CAESARS; ANR MFG; National Science Foundation of China; PolyU-SDU Joint Research Center on Financial Mathematics; CAS AMSS-POLYU Joint Laboratory of Applied Mathematics, and the Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hu_Optimal_Control_SDEs.pdfPre-Published version906.71 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

90
Citations as of Apr 14, 2025

Downloads

62
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.