Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99065
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorChen, Sen_US
dc.creatorLiang, Zen_US
dc.creatorGuo, Sen_US
dc.creatorLi, Men_US
dc.date.accessioned2023-06-12T09:04:03Z-
dc.date.available2023-06-12T09:04:03Z-
dc.identifier.issn0038-092Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/99065-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2022 International Solar Energy Society. Published by Elsevier Ltd. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Chen, Shanlin; Liang, Zhaojian; Guo, Su; Li, Mengying(2022). Estimation of high-resolution solar irradiance data using optimized semi-empirical satellite method and GOES-16 imagery. Solar Energy, 241, 404-415 is available at https://doi.org/10.1016/j.solener.2022.06.013.en_US
dc.subjectClear-sky modelen_US
dc.subjectGlobal horizontal irradianceen_US
dc.subjectSemi-empirical methoden_US
dc.subjectSolar resourcingen_US
dc.titleEstimation of high-resolution solar irradiance data using optimized semi-empirical satellite method and GOES-16 imageryen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage404en_US
dc.identifier.epage415en_US
dc.identifier.volume241en_US
dc.identifier.doi10.1016/j.solener.2022.06.013en_US
dcterms.abstractSemi-empirical satellite method is widely used in estimating global horizontal irradiance (GHI), where various clear-sky models, cloud index (CI) and clear-sky index (CSI) derivation methods are available. This study aims to optimize the semi-empirical satellite model for 5-minute GHI estimation from four aspects: satellite-bands, CI and CSI derivation methods, and clear-sky models. The results show that it achieves better GHI estimates using the blue band, CI derived from monthly fixed upper and lower bounds, and a piecewise CI-to-CSI function. There is no significant difference in all-sky GHI estimation for the clear-sky models regarding normalized root mean squared error (nRMSE, 25.19%–25.53%), which is comparable with the referenced physical model. Clouds cause the largest uncertainty, where the nRMSE is in the range of 37.60%–38.36% in cloudy days and 31.12%–31.54% in cloudy periods. In the application of semi-empirical method with different clear-sky models, Ineichen–Perez has the highest bias of -4.62% in clear days and -3.93% in cloudless periods. REST2 outperforms McClear with slightly lower nRMSE and normalized mean bias error (nMBE) under all sky conditions. McClear is recommended due to its global availability. Modified Ineichen–Perez produces the lowest nRMSE and nMBE using clear-sky GHI as the GHI estimates for clear periods, therefore has the potential for improvements in physical methods.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSolar energy, 15 July 2022, v. 241, p. 404-415en_US
dcterms.isPartOfSolar energyen_US
dcterms.issued2022-07-15-
dc.identifier.scopus2-s2.0-85132735423-
dc.identifier.eissn1471-1257en_US
dc.description.validate202306 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2114-
dc.identifier.SubFormID46644-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextJiangsu Province Science and Technology Departmenten_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
SLChen_CSM_GHI_Semi_r1.pdfPre-Published version866.61 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

111
Citations as of Nov 10, 2025

Downloads

135
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

17
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

12
Citations as of May 15, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.