Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99058
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorFu, Gen_US
dc.creatorHorst, Uen_US
dc.creatorXia, Xen_US
dc.date.accessioned2023-06-12T09:04:00Z-
dc.date.available2023-06-12T09:04:00Z-
dc.identifier.issn0960-1627en_US
dc.identifier.urihttp://hdl.handle.net/10397/99058-
dc.language.isoenen_US
dc.publisherWiley-Blackwellen_US
dc.rights© 2022 The Authors.en_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivsLicense (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en_US
dc.rightsThe following publication Fu, Guanxing; Horst, Ulrich; Xia, Xiaonyu(2022). Portfolio liquidation games with self‐exciting order flow. Mathematical Finance, 32(4), 1020-1065 is available at https://doi.org/10.1111/mafi.12359.en_US
dc.subjectHawkes processen_US
dc.subjectMean-field gamesen_US
dc.subjectPortfolio liquidationen_US
dc.subjectSingular terminal valueen_US
dc.subjectStochastic gamesen_US
dc.titlePortfolio liquidation games with self-exciting order flowen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1020en_US
dc.identifier.epage1065en_US
dc.identifier.volume32en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1111/mafi.12359en_US
dcterms.abstractWe analyze novel portfolio liquidation games with self-exciting order flow. Both the N-player game and the mean-field game (MFG) are considered. We assume that players' trading activities have an impact on the dynamics of future market order arrivals thereby generating an additional transient price impact. Given the strategies of her competitors each player solves a mean-field control problem. We characterize open-loop Nash equilibria in both games in terms of a novel mean-field FBSDE system with unknown terminal condition. Under a weak interaction condition, we prove that the FBSDE systems have unique solutions. Using a novel sufficient maximum principle that does not require convexity of the cost function we finally prove that the solution of the FBSDE systems do indeed provide open-loop Nash equilibria.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematical finance, Oct. 2022, v. 32, no. 4, p. 1020-1065en_US
dcterms.isPartOfMathematical financeen_US
dcterms.issued2022-10-
dc.identifier.scopus2-s2.0-85131844790-
dc.description.validate202306 bcwwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2112-
dc.identifier.SubFormID46634-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFC Grant No. 12101523en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Fu_Portfolio_Liquidation_Games.pdf957.9 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

126
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

257
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

9
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.