Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99055
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorLin, Cen_US
dc.creatorRuan, Hen_US
dc.date.accessioned2023-06-12T09:03:58Z-
dc.date.available2023-06-12T09:03:58Z-
dc.identifier.issn2352-152Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/99055-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2023 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Lin, Chen; Ruan, Haihui(2023). Mechano-electrochemical modeling of lithium dendrite penetration in a solid-state electrolyte: Mechanism and suppression. Journal of Energy Storage, 65, 107389 is available at https://doi.org/10.1016/j.est.2023.107389.en_US
dc.subjectLithium dendrite penetrationen_US
dc.subjectMechano-electrochemical modelingen_US
dc.subjectSolid-state electrolyteen_US
dc.titleMechano-electrochemical modeling of lithium dendrite penetration in a solid-state electrolyte : mechanism and suppressionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume65en_US
dc.identifier.doi10.1016/j.est.2023.107389en_US
dcterms.abstractThe mechanism of lithium dendrite penetration in solid-state electrolyte (SE) and its suppression strategies are studied based on a new phase field (PF) model involving fracture mechanics, electrodeposition processes, and mechano-electrochemical coupling (MEC) effects. Numerical results reveal the high stress-intensity factor is caused by high hydrostatic pressure in lithium, and the high stiffness of SE does not inhibit dendrite penetration. It is because the increase in Young's module of SE, ESE, makes the stress-intensity factor even more significant. That is why a stiff SE is “pierced” by the much softer lithium dendrites. Considering MEC, the increase in ESE has a competing effect on dendrite penetration causing a nonmonotonic change in dendrite length, which provides a window to mitigate dendrite penetration. Dendrite suppression by toughening SE is quantitatively evaluated. A critical fracture surface energy density of SE (γ = 3.5 J m−2) is determined. When γ > 3.5 J m−2, facture toughness becomes larger than stress-intensity factor and dendrite penetration is suppressed with ESE. However, toughening is difficult. Engineering compressive traction, Fa, in SE surfaces is a more realistic strategy, that cause a significantly inhibition in dendrite penetration with Fa from 0 to 100 MPa.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of energy storage, 15 Aug. 2023, v. 65, 107389en_US
dcterms.isPartOfJournal of energy storageen_US
dcterms.issued2023-08-15-
dc.identifier.scopus2-s2.0-85152593433-
dc.identifier.eissn2352-1538en_US
dc.identifier.artn107389en_US
dc.description.validate202306 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2111-
dc.identifier.SubFormID46631-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lin_Mechano-electrochemical_modeling_lithium.pdfPre-Published version3.23 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

130
Last Week
30
Last month
Citations as of Aug 17, 2025

SCOPUSTM   
Citations

5
Citations as of Aug 29, 2025

WEB OF SCIENCETM
Citations

6
Citations as of Aug 28, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.