Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/99019
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorQi, HDen_US
dc.date.accessioned2023-06-08T01:09:14Z-
dc.date.available2023-06-08T01:09:14Z-
dc.identifier.urihttp://hdl.handle.net/10397/99019-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2023 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Qi, H. D. (2023). Geometric Characterization of Maximum Diversification Return Portfolio via Rao’s Quadratic Entropy. SIAM Journal on Financial Mathematics, 14(2), 525-556 is available at https://doi.org/10.1137/22M1492313.en_US
dc.subjectMaximum diversification returnen_US
dc.subjectEuclidean distance matrixen_US
dc.subjectRao’s quadratic entropyen_US
dc.subjectRidge regularizationen_US
dc.subjectLong-only portfolioen_US
dc.subjectSpherical embeddingen_US
dc.titleGeometric characterization of maximum diversification return portfolio via Rao’s quadratic entropyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage525en_US
dc.identifier.epage556en_US
dc.identifier.volume14en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1137/22M1492313en_US
dcterms.abstractDiversification return has been well studied in finance literature, mainly focusing on the various sources from which it may be generated. The maximization of diversification return, in its natural form, is often handed over to convex quadratic optimization for its solution. In this paper, we study the maximization problem from the perspective of Rao’s quadratic entropy (RQE), which is closely related to the Euclidean distance matrix and hence has deep geometric implications. This new approach reveals a fundamental feature that the maximum diversification return portfolio (MDRP) admits a spherical embedding with the hypersphere having the least volume. This important characterization extends to the maximum volatility portfolio, the long-only MDRP, and the ridge-regularized MDRP. RQE serves as a unified formulation for diversification return related portfolios and generates new portfolios that are worth further investigation. As an application of this geometric characterization, we develop a computational formula for measuring the distance between a new asset and an existing portfolio that has the hyperspherical embedding. Numerical experiments demonstrate the developed theory.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on financial mathematics, June 2023, v. 14, no. 2, p. 525-556en_US
dcterms.isPartOfSIAM journal on financial mathematicsen_US
dcterms.issued2023-06-
dc.identifier.eissn1945-497Xen_US
dc.description.validate202306 bcwwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2088-
dc.identifier.SubFormID46525-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextDepartmental project of P0044200 of Applied Mathematicsen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
22m1492313.pdf1.28 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

136
Citations as of Nov 10, 2025

Downloads

251
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

2
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

2
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.