Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98986
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.creatorYan, Ren_US
dc.creatorTian, Xen_US
dc.creatorWang, Sen_US
dc.creatorPeng, Cen_US
dc.date.accessioned2023-06-08T01:08:30Z-
dc.date.available2023-06-08T01:08:30Z-
dc.identifier.issn2324-9935en_US
dc.identifier.urihttp://hdl.handle.net/10397/98986-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2022 Hong Kong Society for Transportation Studies Limiteden_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Transportmetrica A: Transport Science on 18 Nov 2022 (Published online), available online: http://www.tandfonline.com/10.1080/23249935.2022.2145862.en_US
dc.subjectContainer color detectionen_US
dc.subjectContainer crane operatoren_US
dc.subjectContainer terminal managementen_US
dc.subjectCrane operator alarm problemen_US
dc.titleDevelopment of computer vision informed container crane operator alarm methodsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume20en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1080/23249935.2022.2145862en_US
dcterms.abstractTo reduce the extra work, the operation cost, and the risk of cargo delay induced by the unloading of wrong containers, this study first develops a container color detection model to predict the color of the container being unloaded. The prediction results are then used to develop two crane operator alarm methods. Method 1 alerts the crane operator if the detected color of a container is not in compliance with the correct container color. Method 2 constructs a decision problem to decide whether to alert the operator. The results of numerical experiments show that methods 1 and 2 are better than the benchmark. Specifically, method 1 can save the expected annual total cost by about 82% while method 2 can save the expected annual total cost by about 85%. Extensive sensitivity analysis is also conducted to verify the methods performance and robustness.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTransportmetrica. A, Transport science, 2024, v. 20, no. 2, 2145862en_US
dcterms.isPartOfTransportmetrica. A, Transport scienceen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85142246706-
dc.identifier.eissn2324-9943en_US
dc.identifier.artn2145862en_US
dc.description.validate202306 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2091-
dc.identifier.SubFormID46548-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextGuangdong Granten_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tian_Development_Computer_Vision.pdfPre-Published version915.16 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

119
Last Week
0
Last month
Citations as of Nov 30, 2025

Downloads

105
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.