Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98983
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studies-
dc.contributorFaculty of Business-
dc.creatorTian, Xen_US
dc.creatorYan, Ren_US
dc.creatorWang, Sen_US
dc.creatorLiu, Yen_US
dc.creatorZhen, Len_US
dc.date.accessioned2023-06-08T01:08:29Z-
dc.date.available2023-06-08T01:08:29Z-
dc.identifier.urihttp://hdl.handle.net/10397/98983-
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rights© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).en_US
dc.rightsThe following publication Tian, X., Yan, R., Wang, S., Liu, Y., & Zhen, L. (2023). Tutorial on prescriptive analytics for logistics: What to predict and how to predict. EElectronic Research Archive, 31(4), 2265-2285 is available at https://doi.org/10.3934/era.2023116.en_US
dc.subjectLogisticsen_US
dc.subjectMachine learningen_US
dc.subjectOptimizationen_US
dc.subjectPredictive analyticsen_US
dc.subjectPrescriptive analyticsen_US
dc.titleTutorial on prescriptive analytics for logistics : what to predict and how to predicten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2265en_US
dc.identifier.epage2285en_US
dc.identifier.volume31en_US
dc.identifier.issue4en_US
dc.identifier.doi10.3934/era.2023116en_US
dcterms.abstractThe development of the Internet of things (IoT) and online platforms enables companies and governments to collect data from a much broader spatial and temporal area in the logistics industry. The huge amount of data provides new opportunities to handle uncertainty in optimization problems within the logistics system. Accordingly, various prescriptive analytics frameworks have been developed to predict different parts of uncertain optimization problems, including the uncertain parameter, the combined coefficient consisting of the uncertain parameter, the objective function, and the optimal solution. This tutorial serves as the pioneer to introduce existing literature on state-of-the-art prescriptive analytics methods, such as the predict-then-optimize framework, the smart predict-then-optimize framework, the weighted sample average approximation framework, the empirical risk minimization framework, and the kernel optimization framework. Based on these frameworks, this tutorial further proposes possible improvements and practical tips to be considered when we use these methods. We hope that this tutorial will serve as a reference for future prescriptive analytics research on the logistics system in the era of big data-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationElectronic research archive, 2023, v. 31, no. 4, p. 2265-2285en_US
dcterms.isPartOfElectronic research archiveen_US
dcterms.issued2023-
dc.identifier.scopus2-s2.0-85150449778-
dc.identifier.eissn2688-1594en_US
dc.description.validate202306 bckw-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2089-
dc.identifier.SubFormID46542-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
10.3934_era.2023116.pdf586.66 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

99
Last Week
1
Last month
Citations as of Nov 9, 2025

Downloads

105
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

15
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

13
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.