Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98975
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.creatorWang, Sen_US
dc.creatorTian, Xen_US
dc.creatorYan, Ren_US
dc.creatorLiu, Yen_US
dc.date.accessioned2023-06-08T01:08:23Z-
dc.date.available2023-06-08T01:08:23Z-
dc.identifier.urihttp://hdl.handle.net/10397/98975-
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rights© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).en_US
dc.rightsThe following publication Wang, S., Tian, X., Yan, R., & Liu, Y. (2022). A deficiency of prescriptive analytics—No perfect predicted value or predicted distribution exists. Electronic Research Archive, 30(10), 3586-3594 is available at https://doi.org/10.3934/era.2022183.en_US
dc.subjectPredict-then-optimizeen_US
dc.subjectPrescriptive analyticsen_US
dc.subjectSmart predict-then-optimizeen_US
dc.subjectWeighted sample average approximationen_US
dc.titleA deficiency of prescriptive analytics — no perfect predicted value or predicted distribution existsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3586en_US
dc.identifier.epage3594en_US
dc.identifier.volume30en_US
dc.identifier.issue10en_US
dc.identifier.doi10.3934/era.2022183en_US
dcterms.abstractResearchers and industrial practitioners are now interested in combining machine learning (ML) and operations research and management science to develop prescriptive analytics frameworks. By and large, a single value or a discrete distribution with a finite number of scenarios is predicted using an ML model with an unknown parameter; the value or distribution is then fed into an optimization model with the unknown parameter to prescribe an optimal decision. In this paper, we prove a deficiency of prescriptive analytics, i.e., that no perfect predicted value or perfect predicted distribution exists in some cases. To illustrate this phenomenon, we consider three different frameworks of prescriptive analytics, namely, the predict-then-optimize framework, smart predict-then-optimize framework and weighted sample average approximation (w-SAA) framework. For these three frameworks, we use examples to show that prescriptive analytics may not be able to prescribe a full-information optimal decision, i.e., the optimal decision under the assumption that the distribution of the unknown parameter is given. Based on this finding, for practical prescriptive analytics problems, we suggest comparing the prescribed results among different frameworks to determine the most appropriate one.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationElectronic research archive, 2022, v. 30, no. 10, p. 3586-3594en_US
dcterms.isPartOfElectronic research archiveen_US
dcterms.issued2022-
dc.identifier.scopus2-s2.0-85135263185-
dc.identifier.eissn2688-1594en_US
dc.description.validate202306 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2089-
dc.identifier.SubFormID46526-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
10.3934_era.2022183.pdf778.15 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

111
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

92
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

11
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

11
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.