Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98955
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.contributorMainland Development Officeen_US
dc.creatorShi, Fen_US
dc.creatorOnofrio, Nen_US
dc.creatorChen, Cen_US
dc.creatorCai, Sen_US
dc.creatorLi, Yen_US
dc.creatorZhai, Len_US
dc.creatorZhuang, Len_US
dc.creatorXu, ZLen_US
dc.creatorLau, SPen_US
dc.date.accessioned2023-06-06T00:55:20Z-
dc.date.available2023-06-06T00:55:20Z-
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://hdl.handle.net/10397/98955-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2022 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://dx.doi.org/10.1021/acsnano.2c04769.en_US
dc.subjectIn situ optical microscopyen_US
dc.subjectLiquid sulfuren_US
dc.subjectLithium-sulfur batteryen_US
dc.subjectLow-temperature batteryen_US
dc.subjectMoS2en_US
dc.titleStable liquid-sulfur generation on transition-metal dichalcogenides toward low-temperature lithium-sulfur batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage14412en_US
dc.identifier.epage14421en_US
dc.identifier.volume16en_US
dc.identifier.issue9en_US
dc.identifier.doi10.1021/acsnano.2c04769en_US
dcterms.abstractThe electrochemical formation of liquid sulfur at room temperature on the basal plane of MoS2 has attracted much attention due to the high areal capacity and rapid kinetics of lithium-liquid sulfur chemistry. However, the liquid sulfur is converted to the solid phase once it contacts the solid sulfur crystals generated from the edge of MoS2. Thus, stable liquid sulfur cannot be formed on the entire MoS2 surface. Herein, we report entire liquid sulfur generation on hydrogen-annealed MoS2 (H2-MoS2), even under harsh conditions of large overpotentials and low working temperatures. The origins of the solely liquid sulfur formation are revealed to be the weakened interactions between H2-MoS2 and sulfur molecules and the decreased electrical polarization on the edges of the H2-MoS2. Progressive nucleation and droplet-merging growth behaviors are observed during the sulfur formation on H2-MoS2, signifying high areal capacities by releasing active H2-MoS2 surfaces. To demonstrate the universality of this strategy, other transition-metal dichalcogenides (TMDs) annealed in hydrogen also exhibit similar sulfur growth behaviors. Furthermore, the H2 annealing treatment can induce sulfur vacancies on the basal plane and partial oxidation on the edge of TMDs, which facilitates liquid sulfur formation. Finally, liquid sulfur can be generated on H2-MoS2 flakes at an ultralow temperature of -50 °C, which provides a possible development of low-temperature lithium-sulfur batteries. This work demonstrates the potential of a pure liquid sulfur-lithium electrochemical system using functionalized two-dimensional materials.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS nano, 27 Sept. 2022, v. 16, no. 9, p. 14412-14421en_US
dcterms.isPartOfACS nanoen_US
dcterms.issued2022-09-27-
dc.identifier.scopus2-s2.0-85137394155-
dc.identifier.pmid36001112-
dc.identifier.eissn1936-086Xen_US
dc.description.validate202306 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2073-
dc.identifier.SubFormID46466-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Shi_Stable_Liquid-sulfur_Generation.pdfPre-Published version2.18 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

78
Citations as of Apr 14, 2025

Downloads

166
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

29
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

29
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.