Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98954
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorLin, Gen_US
dc.creatorJu, Qen_US
dc.creatorLiu, Len_US
dc.creatorGuo, Xen_US
dc.creatorZhu, Yen_US
dc.creatorZhang, Zen_US
dc.creatorZhao, Cen_US
dc.creatorWan, Yen_US
dc.creatorYang, Men_US
dc.creatorHuang, Fen_US
dc.creatorWang, Jen_US
dc.date.accessioned2023-06-06T00:55:19Z-
dc.date.available2023-06-06T00:55:19Z-
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://hdl.handle.net/10397/98954-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2022 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsnano.2c04513.en_US
dc.subjectBronze TiO2en_US
dc.subjectCaged cationsen_US
dc.subjectElectrocatalysisen_US
dc.subjectLattice distortionen_US
dc.subjectSynergistic effecten_US
dc.titleCaged-cation-induced lattice distortion in bronze TiO2for cohering nanoparticulate hydrogen evolution electrocatalystsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage9920en_US
dc.identifier.epage9928en_US
dc.identifier.volume16en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1021/acsnano.2c04513en_US
dcterms.abstractDefect engineering provides a promising approach for optimizing the trade-off between support structures and active nanoparticles in heterojunction nanostructures, manifesting efficient synergy in advanced catalysis. Herein, a high density of distorted lattices and defects are successfully formed in bronze TiO2through caging alkali-metal Na cations in open voids (Na-TiO2(B)), which could efficiently cohere nanoparticulate electrocatalysts toward alkaline hydrogen evolution reaction (HER). The RuMo bimetallic nanoparticles could directionally anchor on Na-TiO2(B) with a certain angle of ∼22° due to elimination of the lattice mismatch, thus promoting uniform dispersion and small sizing of supported nanoparticles. Moreover, caging Na ions could significantly enhance the hydrophilicity of the substrate in RuMo/Na-TiO2(B), leading to the strengthening synergy of water dissociation and hydrogen desorption. As expected, this Na-caged nanocomposite catalyst rich with structural perturbations manifests a 6.4-fold turnover frequency (TOF) increase compared to Pt/C. The study provides a paradigm for designing stable nano-heterojunction catalysts with lattice-distorted substrates by caging cations toward advanced electrocatalytic transformations.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS nano, 28 June 2022, v. 16, no. 6, p. 9920-9928en_US
dcterms.isPartOfACS nanoen_US
dcterms.issued2022-06-28-
dc.identifier.scopus2-s2.0-85133959846-
dc.identifier.pmid35713656-
dc.identifier.eissn1936-086Xen_US
dc.description.validate202306 bcwwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2076-
dc.identifier.SubFormID46474-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lin_Caged-Cation-Induced_Lattice.pdfPre-Published version1.36 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

93
Citations as of Apr 14, 2025

Downloads

154
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

44
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

44
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.