Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98940
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorHou, Zen_US
dc.creatorZhou, Ren_US
dc.creatorMin, Zen_US
dc.creatorLu, Zen_US
dc.creatorZhang, Ben_US
dc.date.accessioned2023-06-06T00:54:36Z-
dc.date.available2023-06-06T00:54:36Z-
dc.identifier.issn2380-8195en_US
dc.identifier.urihttp://hdl.handle.net/10397/98940-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2022 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Energy Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://dx.doi.org/10.1021/acsenergylett.2c02366.en_US
dc.titleRealizing wide-temperature reversible Ca metal anodes through a Ca2+-conducting artificial layeren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage274en_US
dc.identifier.epage279en_US
dc.identifier.volume8en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1021/acsenergylett.2c02366en_US
dcterms.abstractRoom-temperature Ca deposition/stripping is impeded by the formation of ionic insulating interfaces. Electrolyte optimization could partially enhance Ca reversibility by tailoring the interfaces, but the precise regulation of the composition remains challenging. Herein, we construct an ex situ artificial layer on Ca metal via a facile displacement reaction between metal halides and Ca. These Ca-driven spontaneous layers with precisely controlled interfacial chemistry consist of a Ca metal alloy phase and a calcium halide matrix for conducting Ca2+ and insulating the electrons, as revealed by theoretical and experimental investigations. In particular, the Ca31Sn20/CaBr2 interface enables Ca metal anodes to achieve low polarization and humid air stability over a wide temperature range from −25 to +50 °C. This proof-of-concept work provides an alternative approach to boost Ca2+ diffusivity through customized interfacial chemistry regulation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS energy letters, 13 Jan. 2023, v. 8, no. 1, p. 274-279en_US
dcterms.isPartOfACS energy lettersen_US
dcterms.issued2023-01-13-
dc.identifier.scopus2-s2.0-85143595339-
dc.description.validate202306 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2080-
dc.identifier.SubFormID46491-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hou_Realizing_Wide-Temperature_Reversible.pdfPre-Published version1.3 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

102
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

67
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

19
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.