Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98937
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorHou, Zen_US
dc.creatorZhang, Ben_US
dc.date.accessioned2023-06-06T00:54:33Z-
dc.date.available2023-06-06T00:54:33Z-
dc.identifier.urihttp://hdl.handle.net/10397/98937-
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.rights© 2022 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.en_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Hou, Z., & Zhang, B. (2022). Boosting Zn metal anode stability: from fundamental science to design principles. EcoMat, 4(6), e12265 is available at https://doi.org/10.1002/eom2.12265.en_US
dc.subjectDendrite growthen_US
dc.subjectHydrogen evolution reactionsen_US
dc.subjectZn metal anodesen_US
dc.subjectZn2+ deposition stepsen_US
dc.titleBoosting Zn metal anode stability : from fundamental science to design principlesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume4en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1002/eom2.12265en_US
dcterms.abstractThe development of Zn metal anodes suffers from several critical issues, including dendrite growth, hydrogen evolution reaction, and corrosion. Extensive efforts have been applied through ameliorating electrode structures, electrode/separator interfaces, and electrolyte formulations. We deviate from the specific approaches and discuss the roots of the existing problems to exploit the fundamental science behind the proposed approaches. We divide the Zn deposition process into four steps, that is, mass transfer in the bulk electrolyte, desolvation on the electrode surface, charge transfer for the Zn2+ reduction, and Zn cluster formation through the electro-crystallization. It can be seen that all the reported strategies for improving Zn anode stability deal with at least one of these steps, thereby enhancing the understanding of dendrite formation and benefiting the rational design to circumvent the issue. We also scrutinize the previous attempts to suppress the side reactions through water activity reduction and electrode passivation to raise battery reliability. Finally, we propose possible solutions to the remaining but urgent challenges toward low-cost, high-safety, and long-lifespan Zn metal batteries.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEcoMat, Nov. 2022, v. 4, no. 6, e12265en_US
dcterms.isPartOfEcoMaten_US
dcterms.issued2022-11-
dc.identifier.scopus2-s2.0-85135862631-
dc.identifier.eissn2567-3173en_US
dc.identifier.artne12265en_US
dc.description.validate202306 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2080-
dc.identifier.SubFormID46488-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hou_Boosting_Metal_Anode.pdf5.03 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

100
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

112
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

40
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

38
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.