Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98869
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Biomedical Engineering-
dc.creatorWang, Hen_US
dc.creatorGao, Cen_US
dc.creatorFu, Hen_US
dc.creatorMa, CZHen_US
dc.creatorWang, Qen_US
dc.creatorHe, Zen_US
dc.creatorLi, Men_US
dc.date.accessioned2023-06-01T06:05:17Z-
dc.date.available2023-06-01T06:05:17Z-
dc.identifier.urihttp://hdl.handle.net/10397/98869-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).-
dc.rightsThe following publication Wang H, Gao C, Fu H, Ma CZ-H, Wang Q, He Z, Li M. Automated Student Classroom Behaviors’ Perception and Identification Using Motion Sensors. Bioengineering. 2023; 10(2):127 is available at https://doi.org/10.3390/bioengineering10020127.-
dc.subjectClassroom behavior-
dc.subjectDeep learning-
dc.subjectIntelligent system-
dc.subjectMotion identification-
dc.titleAutomated student classroom behaviors’ perception and identification using motion sensorsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume10en_US
dc.identifier.issue2en_US
dc.identifier.doi10.3390/bioengineering10020127en_US
dcterms.abstractWith the rapid development of artificial intelligence technology, the exploration and application in the field of intelligent education has become a research hotspot of increasing concern. In the actual classroom scenarios, students’ classroom behavior is an important factor that directly affects their learning performance. Specifically, students with poor self-management abilities, particularly specific developmental disorders, may face educational and academic difficulties owing to physical or psychological factors. Therefore, the intelligent perception and identification of school-aged children’s classroom behaviors are extremely valuable and significant. The traditional method for identifying students’ classroom behavior relies on statistical surveys conducted by teachers, which incurs problems such as being time-consuming, labor-intensive, privacy-violating, and an inaccurate manual intervention. To address the above-mentioned issues, we constructed a motion sensor-based intelligent system to realize the perception and identification of classroom behavior in the current study. For the acquired sensor signal, we proposed a Voting-Based Dynamic Time Warping algorithm (VB-DTW) in which a voting mechanism is used to compare the similarities between adjacent clips and extract valid action segments. Subsequent experiments have verified that effective signal segments can help improve the accuracy of behavior identification. Furthermore, upon combining with the classroom motion data acquisition system, through the powerful feature extraction ability of the deep learning algorithms, the effectiveness and feasibility are verified from the perspectives of the dimensional signal characteristics and time series separately so as to realize the accurate, non-invasive and intelligent children’s behavior detection. To verify the feasibility of the proposed method, a self-constructed dataset (SCB-13) was collected. Thirteen participants were invited to perform 14 common class behaviors, wearing motion sensors whose data were recorded by a program. In SCB-13, the proposed method achieved 100% identification accuracy. Based on the proposed algorithms, it is possible to provide immediate feedback on students’ classroom performance and help them improve their learning performance while providing an essential reference basis and data support for constructing an intelligent digital education platform.-
dcterms.accessRightsopen access-
dcterms.bibliographicCitationBioengineering, Feb. 2023, v. 10, no. 2, 127en_US
dcterms.isPartOfBioengineeringen_US
dcterms.issued2023-02-
dc.identifier.scopus2-s2.0-85149067172-
dc.identifier.eissn2306-5354en_US
dc.identifier.artn127en_US
dc.description.validate202305 bcww-
dc.description.oaVersion of Record-
dc.identifier.FolderNumbera2049, a2317-n04-
dc.identifier.SubFormID46376-
dc.description.fundingSourceOthers-
dc.description.fundingTextDean’s Reseach Fund (2021/22 DRF/SRAS-1/9th), the Education University of Hong Kong.-
dc.description.fundingTextWuxi Taihu Lake Talent Plan Supporting for Leading Talents in Medical and Health Profession, China.-
dc.description.pubStatusPublished-
dc.description.oaCategoryCC-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
bioengineering-10-00127-v2.pdf4.34 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

192
Citations as of Nov 10, 2025

Downloads

52
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

7
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.