Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98862
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorChen, Cen_US
dc.creatorCui, Jen_US
dc.creatorHong, Jen_US
dc.creatorSheng, Den_US
dc.date.accessioned2023-06-01T06:04:33Z-
dc.date.available2023-06-01T06:04:33Z-
dc.identifier.issn0272-4979en_US
dc.identifier.urihttp://hdl.handle.net/10397/98862-
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.rights© The Author(s) 2022. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.en_US
dc.rightsThis is a pre-copyedited, author-produced version of an article accepted for publication in IMA Journal of Numerical Analysis following peer review. The version of record Chen, C., Cui, J., Hong, J., & Sheng, D. (2023). Accelerated exponential Euler scheme for stochastic heat equation: convergence rate of the density. IMA Journal of Numerical Analysis, 43(2), 1181-1220 is available online at: https://doi.org/10.1093/imanum/drac011.en_US
dc.subjectDensityen_US
dc.subjectConvergence orderen_US
dc.subjectAccelerated exponential Euler schemeen_US
dc.subjectStochastic heat equationen_US
dc.subjectMalliavin calculusen_US
dc.titleAccelerated exponential Euler scheme for stochastic heat equation : convergence rate of the densityen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: Accelerated Exponential Euler Scheme for Stochastic Heat Equation: Convergence Rate of Densitiesen_US
dc.identifier.spage1181en_US
dc.identifier.epage1220en_US
dc.identifier.volume43en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1093/imanum/drac011en_US
dcterms.abstractThis paper studies the numerical approximation of the density of the stochastic heat equation driven by space-time white noise via the accelerated exponential Euler scheme. The existence and smoothness of the density of the numerical solution are proved by means of Malliavin calculus. Based on a priori estimates of the numerical solution we present a test-function-independent weak convergence analysis, which is crucial to show the convergence of the density. The convergence order of the density in uniform convergence topology is shown to be exactly 1/2 in the nonlinear drift case and nearly 1 in the affine drift case. As far as we know, this is the first result on the existence and convergence of density of the numerical solution to the stochastic partial differential equation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIMA journal of numerical analysis, Mar. 2023, v. 43, no. 2, p. 1181-1220en_US
dcterms.isPartOfIMA journal of numerical analysisen_US
dcterms.issued2023-03-
dc.identifier.eissn1464-3642en_US
dc.description.validate202306 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2053-
dc.identifier.SubFormID46395-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Cui_Accelerated_Exponential_Euler.pdfPre-Published version885.59 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

171
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

58
Citations as of Nov 30, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.