Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/98861
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Cui, J | en_US |
| dc.creator | Hong, J | en_US |
| dc.creator | Sheng, D | en_US |
| dc.date.accessioned | 2023-06-01T06:04:32Z | - |
| dc.date.available | 2023-06-01T06:04:32Z | - |
| dc.identifier.issn | 0025-5718 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/98861 | - |
| dc.language.iso | en | en_US |
| dc.publisher | American Mathematical Society | en_US |
| dc.rights | First published in Mathematics of Computation in 91 (September 2022), published by the American Mathematical Society. © Copyright 2022, American Mathematical Society. | en_US |
| dc.rights | This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
| dc.title | Density function of numerical solution of splitting AVF scheme for stochastic Langevin equation | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 2283 | en_US |
| dc.identifier.epage | 2333 | en_US |
| dc.identifier.volume | 91 | en_US |
| dc.identifier.issue | 337 | en_US |
| dcterms.abstract | In this article, we study the density function of the numerical solution of the splitting averaged vector field (AVF) scheme for the stochastic Langevin equation. We first show the existence of the density function of the numerical solution by proving its exponential integrability property, Malliavin differentiability and the almost surely non-degeneracy of the associated Malliavin covariance matrix. Then the smoothness of the density function is obtained through a lower bound estimate of the smallest eigenvalue of the corresponding Malliavin covariance matrix. Meanwhile, we derive the optimal strong convergence rate in every Malliavin–Sobolev norm of the numerical solution via Malliavin calculus. Combining the strong convergence result and the smoothness of the density functions, we prove that the convergence order of the density function of the numerical scheme coincides with its strong convergence order. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Mathematics of computation, Sept. 2022, v. 91, no. 337, p. 2283-2333 | en_US |
| dcterms.isPartOf | Mathematics of computation | en_US |
| dcterms.issued | 2022-09 | - |
| dc.identifier.eissn | 1088-6842 | en_US |
| dc.description.validate | 202306 bckw | en_US |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | a2053 | - |
| dc.identifier.SubFormID | 46394 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Cui_Density_Function_Numerical.pdf | Pre-Published version | 614.73 kB | Adobe PDF | View/Open |
Page views
115
Citations as of Apr 14, 2025
Downloads
55
Citations as of Apr 14, 2025
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



