Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98861
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorCui, Jen_US
dc.creatorHong, Jen_US
dc.creatorSheng, Den_US
dc.date.accessioned2023-06-01T06:04:32Z-
dc.date.available2023-06-01T06:04:32Z-
dc.identifier.issn0025-5718en_US
dc.identifier.urihttp://hdl.handle.net/10397/98861-
dc.language.isoenen_US
dc.publisherAmerican Mathematical Societyen_US
dc.rightsFirst published in Mathematics of Computation in 91 (September 2022), published by the American Mathematical Society. © Copyright 2022, American Mathematical Society.en_US
dc.rightsThis manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.titleDensity function of numerical solution of splitting AVF scheme for stochastic Langevin equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2283en_US
dc.identifier.epage2333en_US
dc.identifier.volume91en_US
dc.identifier.issue337en_US
dcterms.abstractIn this article, we study the density function of the numerical solution of the splitting averaged vector field (AVF) scheme for the stochastic Langevin equation. We first show the existence of the density function of the numerical solution by proving its exponential integrability property, Malliavin differentiability and the almost surely non-degeneracy of the associated Malliavin covariance matrix. Then the smoothness of the density function is obtained through a lower bound estimate of the smallest eigenvalue of the corresponding Malliavin covariance matrix. Meanwhile, we derive the optimal strong convergence rate in every Malliavin–Sobolev norm of the numerical solution via Malliavin calculus. Combining the strong convergence result and the smoothness of the density functions, we prove that the convergence order of the density function of the numerical scheme coincides with its strong convergence order.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematics of computation, Sept. 2022, v. 91, no. 337, p. 2283-2333en_US
dcterms.isPartOfMathematics of computationen_US
dcterms.issued2022-09-
dc.identifier.eissn1088-6842en_US
dc.description.validate202306 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2053-
dc.identifier.SubFormID46394-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Cui_Density_Function_Numerical.pdfPre-Published version614.73 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

115
Citations as of Apr 14, 2025

Downloads

55
Citations as of Apr 14, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.