Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98853
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.contributorDepartment of Aeronautical and Aviation Engineering-
dc.creatorZhang, Y-
dc.creatorHuang, C-
dc.creatorHuang, H-
dc.creatorWu, J-
dc.date.accessioned2023-06-01T06:04:28Z-
dc.date.available2023-06-01T06:04:28Z-
dc.identifier.urihttp://hdl.handle.net/10397/98853-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2022 The Author(s). Published by Elsevier Ltd on behalf of Beijing Institute of Technology Press Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Zhang, Y., Huang, C., Huang, H., & Wu, J. (2023). Multiple learning neural network algorithm for parameter estimation of proton exchange membrane fuel cell models. Green Energy and Intelligent Transportation, 2(1), 100040 is available at https://doi.org/10.1016/j.geits.2022.100040.en_US
dc.subjectNeural network algorithmen_US
dc.subjectParameter extractionen_US
dc.subjectProton exchange membrane fuel cellen_US
dc.subjectMetaheuristicsen_US
dc.titleMultiple learning neural network algorithm for parameter estimation of proton exchange membrane fuel cell modelsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume2-
dc.identifier.issue1-
dc.identifier.doi10.1016/j.geits.2022.100040-
dcterms.abstractExtracting the unknown parameters of proton exchange membrane fuel cell (PEMFC) models accurately is vital to design, control, and simulate the actual PEMFC. In order to extract the unknown parameters of PEMFC models precisely, this work presents an improved version of neural network algorithm (NNA), namely the multiple learning neural network algorithm (MLNNA). In MLNNA, six learning strategies are designed based on the created local elite archive and global elite archive to balance exploration and exploitation of MLNNA. To evaluate the performance of MLNNA, MLNNA is first employed to solve the well-known CEC 2015 test suite. Experimental results demonstrate that MLNNA outperforms NNA on most test functions. Then, MLNNA is used to extract the parameters of two PEMFC models including the BCS 500 W PEMFC model and the NedStack SP6 PEMFC model. Experimental results support the superiority of MLNNA in the parameter estimation of PEMFC models by comparing it with 10 powerful optimization algorithms.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationGreen energy and intelligent transportation, Feb. 2023, v. 2, no. 1, 100040-
dcterms.isPartOfGreen energy and intelligent transportation-
dcterms.issued2023-02-
dc.identifier.eissn2773-1537-
dc.identifier.artn100040-
dc.description.validate202306 bckw-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera2052en_US
dc.identifier.SubFormID46385en_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPostdoc Matching Fund Scheme, the Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2773153722000408-main.pdf2.73 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

151
Last Week
4
Last month
Citations as of Nov 9, 2025

Downloads

147
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

9
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

38
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.