Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98851
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorCui, Jen_US
dc.creatorLiu, Sen_US
dc.creatorZhou, Hen_US
dc.date.accessioned2023-06-01T06:04:26Z-
dc.date.available2023-06-01T06:04:26Z-
dc.identifier.issn1040-7294en_US
dc.identifier.urihttp://hdl.handle.net/10397/98851-
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.rights© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10884-023-10264-4.en_US
dc.subjectDensity manifolden_US
dc.subjectStochastic Hamiltonian flowen_US
dc.subjectWong–Zakai approximationen_US
dc.titleStochastic Wasserstein Hamiltonian flowsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3885en_US
dc.identifier.epage3921en_US
dc.identifier.volume36en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1007/s10884-023-10264-4en_US
dcterms.abstractIn this paper, we study the stochastic Hamiltonian flow in Wasserstein manifold, the probability density space equipped with L2-Wasserstein metric tensor, via the Wong–Zakai approximation. We begin our investigation by showing that the stochastic Euler–Lagrange equation, regardless it is deduced from either the variational principle or particle dynamics, can be interpreted as the stochastic kinetic Hamiltonian flows in Wasserstein manifold. We further propose a novel variational formulation to derive more general stochastic Wasserstein Hamiltonian flows, and demonstrate that this new formulation is applicable to various systems including the stochastic Schrödinger equation, Schrödinger equation with random dispersion, and Schrödinger bridge problem with common noise.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of dynamics and differential equations, Dec. 2024, v. 36, no. 4, p.3885-3921en_US
dcterms.isPartOfJournal of dynamics and differential equationsen_US
dcterms.issued2024-12-
dc.identifier.scopus2-s2.0-85152906386-
dc.identifier.eissn1572-9222en_US
dc.description.validate202306 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2051-
dc.identifier.SubFormID46383-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe research is partially supported by Georgia Tech Mathematics Application Portal (GT-MAP) and by research grants NSF DMS-1830225, and ONR N00014-21-1-2891, the start-up funds P0039016 and internal grants (P0041274,P0045336) from Hong Kong Polytechnic University, the CAS AMSS-PolyU Joint Laboratory of Applied Mathematics and the grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (PolyU25302822 for ECS project).en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Cui_Stochastic_Wasserstein_Hamiltonian.pdfPre-Published version323.96 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

115
Last Week
0
Last month
Citations as of Oct 5, 2025

Downloads

70
Citations as of Oct 5, 2025

SCOPUSTM   
Citations

6
Citations as of Oct 24, 2025

WEB OF SCIENCETM
Citations

6
Citations as of Oct 23, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.