Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/98709
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | en_US |
dc.creator | Li, T | en_US |
dc.creator | Wang, ZA | en_US |
dc.date.accessioned | 2023-05-10T02:04:21Z | - |
dc.date.available | 2023-05-10T02:04:21Z | - |
dc.identifier.issn | 1547-1063 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/98709 | - |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Mathematical Sciences | en_US |
dc.rights | © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0). | en_US |
dc.rights | The following publication Li, T., & Wang, Z. A. (2022). Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 19(8), 8107-8131 is available at https://doi.org/10.3934/mbe.2022379. | en_US |
dc.subject | Keller-Segel model | en_US |
dc.subject | Linear instability | en_US |
dc.subject | Minimal wave speed | en_US |
dc.subject | Singular perturbation method | en_US |
dc.subject | Traveling waves | en_US |
dc.title | Traveling wave solutions of a singular Keller-Segel system with logistic source | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 8107 | en_US |
dc.identifier.epage | 8131 | en_US |
dc.identifier.volume | 19 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.doi | 10.3934/mbe.2022379 | en_US |
dcterms.abstract | This paper is concerned with the traveling wave solutions of a singular Keller-Segel system modeling chemotactic movement of biological species with logistic growth. We first show the existence of traveling wave solutions with zero chemical diffusion in R. We then show the existence of traveling wave solutions with small chemical diffusion by the geometric singular perturbation theory and establish the zero diffusion limit of traveling wave solutions. Furthermore, we show that the traveling wave solutions are linearly unstable in the Sobolev space H1(R) × H2(R) by the spectral analysis. Finally we use numerical simulations to illustrate the stabilization of traveling wave profiles with fast decay initial data and numerically demonstrate the effect of system parameters on the wave propagation dynamics. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | Mathematical biosciences and engineering, 2022, v. 19, no. 8, p. 8107-8131 | en_US |
dcterms.isPartOf | Mathematical biosciences and engineering | en_US |
dcterms.issued | 2022 | - |
dc.identifier.isi | WOS:000809420100002 | - |
dc.identifier.scopus | 2-s2.0-85132214786 | - |
dc.description.validate | 202305 bcvc | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_Scopus/WOS | - |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | Hong Kong Polytechnic University | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | CC | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.3934_mbe.2022379.pdf | 866.26 kB | Adobe PDF | View/Open |
Page views
99
Citations as of Apr 14, 2025
Downloads
82
Citations as of Apr 14, 2025
SCOPUSTM
Citations
5
Citations as of May 29, 2025
WEB OF SCIENCETM
Citations
5
Citations as of Jun 5, 2025

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.