Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98709
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Ten_US
dc.creatorWang, ZAen_US
dc.date.accessioned2023-05-10T02:04:21Z-
dc.date.available2023-05-10T02:04:21Z-
dc.identifier.issn1547-1063en_US
dc.identifier.urihttp://hdl.handle.net/10397/98709-
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rights© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).en_US
dc.rightsThe following publication Li, T., & Wang, Z. A. (2022). Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 19(8), 8107-8131 is available at https://doi.org/10.3934/mbe.2022379.en_US
dc.subjectKeller-Segel modelen_US
dc.subjectLinear instabilityen_US
dc.subjectMinimal wave speeden_US
dc.subjectSingular perturbation methoden_US
dc.subjectTraveling wavesen_US
dc.titleTraveling wave solutions of a singular Keller-Segel system with logistic sourceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage8107en_US
dc.identifier.epage8131en_US
dc.identifier.volume19en_US
dc.identifier.issue8en_US
dc.identifier.doi10.3934/mbe.2022379en_US
dcterms.abstractThis paper is concerned with the traveling wave solutions of a singular Keller-Segel system modeling chemotactic movement of biological species with logistic growth. We first show the existence of traveling wave solutions with zero chemical diffusion in R. We then show the existence of traveling wave solutions with small chemical diffusion by the geometric singular perturbation theory and establish the zero diffusion limit of traveling wave solutions. Furthermore, we show that the traveling wave solutions are linearly unstable in the Sobolev space H1(R) × H2(R) by the spectral analysis. Finally we use numerical simulations to illustrate the stabilization of traveling wave profiles with fast decay initial data and numerically demonstrate the effect of system parameters on the wave propagation dynamics.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematical biosciences and engineering, 2022, v. 19, no. 8, p. 8107-8131en_US
dcterms.isPartOfMathematical biosciences and engineeringen_US
dcterms.issued2022-
dc.identifier.isiWOS:000809420100002-
dc.identifier.scopus2-s2.0-85132214786-
dc.description.validate202305 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
10.3934_mbe.2022379.pdf866.26 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

99
Citations as of Apr 14, 2025

Downloads

82
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of May 29, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Jun 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.