Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/98693
| Title: | Near-infrared photothermally enhanced photo-oxygenation for inhibition of amyloid-β aggregation based on RVG-conjugated porphyrinic metal–organic framework and indocyanine green nanoplatform | Authors: | Wang, J Gu, Y Liu, X Fan, Y Zhang, Y Yi, C Cheng, C Yang, M |
Issue Date: | Sep-2022 | Source: | International journal of molecular sciences, Sept. 2022, v. 23, no. 18, 10885 | Abstract: | Amyloid aggregation is associated with many neurodegenerative diseases such as Alzheimer’s disease (AD). The current technologies using phototherapy for amyloid inhibition are usually photodynamic approaches based on evidence that reactive oxygen species can inhibit Aβ aggregation. Herein, we report a novel combinational photothermally assisted photo-oxygenation treatment based on a nano-platform of the brain-targeting peptide RVG conjugated with the 2D porphyrinic PCN−222 metal–organic framework and indocyanine green (PCN−222@ICG@RVG) with enhanced photo-inhibition in Alzheimer’s Aβ aggregation. A photothermally assisted photo-oxygenation treatment based on PCN@ICG could largely enhance the photo-inhibition effect on Aβ42 aggregation and lead to much lower neurotoxicity upon near-infrared (NIR) irradiation at 808 nm compared with a single modality of photo-treatment in both cell-free and in vitro experiments. Generally, local photothermal heat increases the instability of Aβ aggregates and keeps Aβ in the status of monomers, which facilitates the photo-oxygenation process of generating oxidized Aβ monomers with low aggregation capability. In addition, combined with the brain-targeting peptide RVG, the PCN−222@ICG@RVG nanoprobe shows high permeability of the human blood–brain barrier (BBB) on a human brain-on-a-chip platform. The ex vivo study also demonstrates that NIR-activated PCN−222@ICG@RVG could efficiently dissemble Aβ plaques. Our work suggests that the combination of photothermal treatment with photo-oxygenation can synergistically enhance the inhibition of Aβ aggregation, which may boost NIR-based combinational phototherapy of AD in the future. | Keywords: | Alzheimer’s disease Amyloid-β Brain-targeting Central nervous system (CNS) Metal–organic framework Near-infrared phototherapy Neurodegenerative diseases Photo-oxygenation Porphyrinic nanoparticles |
Publisher: | Molecular Diversity Preservation International (MDPI) | Journal: | International journal of molecular sciences | ISSN: | 1661-6596 | EISSN: | 1422-0067 | DOI: | 10.3390/ijms231810885 | Rights: | © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). The following publication Wang, J., Gu, Y., Liu, X., Fan, Y., Zhang, Y., Yi, C., ... & Yang, M. (2022). Near-Infrared Photothermally Enhanced Photo-Oxygenation for Inhibition of Amyloid-β Aggregation Based on RVG-Conjugated Porphyrinic Metal–Organic Framework and Indocyanine Green Nanoplatform. International Journal of Molecular Sciences, 23(18), 10885 is available at https://doi.org/10.3390/ijms231810885. |
| Appears in Collections: | Journal/Magazine Article |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| ijms-23-10885-v2.pdf | 2.75 MB | Adobe PDF | View/Open |
Page views
78
Citations as of Apr 14, 2025
Downloads
43
Citations as of Apr 14, 2025
SCOPUSTM
Citations
26
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
24
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



