Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98678
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electronic and Information Engineeringen_US
dc.creatorHuang, Zen_US
dc.creatorChan, YLen_US
dc.creatorTsang, SHen_US
dc.creatorLam, KMen_US
dc.date.accessioned2023-05-10T02:04:00Z-
dc.date.available2023-05-10T02:04:00Z-
dc.identifier.urihttp://hdl.handle.net/10397/98678-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.en_US
dc.rightsThe following publication Huang, Z., Chan, Y. L., Tsang, S. H., & Lam, K. M. (2023). Mode Information Guided CNN for Quality Enhancement of Screen Content Coding. IEEE Access, 11, 24149-24161 is available at https://doi.org/10.1109/ACCESS.2023.3242673.en_US
dc.subjectConvolutional neural networken_US
dc.subjectDeep learningen_US
dc.subjectHEVCen_US
dc.subjectQuality enhancementen_US
dc.subjectSCCen_US
dc.titleMode information guided CNN for quality enhancement of screen content codingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage24149en_US
dc.identifier.epage24161en_US
dc.identifier.volume11en_US
dc.identifier.doi10.1109/ACCESS.2023.3242673en_US
dcterms.abstractVideo quality enhancement methods are of great significance in reducing the artifacts of decoded videos in the High Efficiency Video Coding (HEVC). However, existing methods mainly focus on improving the quality of natural sequences, not for screen content sequences that have drawn more attention than ever due to the demands of remote desktops and online meetings. Different from the natural sequences encoded by HEVC, the screen content sequences are encoded by Screen Content Coding (SCC), an extension tool of HEVC. Therefore, we propose a Mode Information guided CNN (MICNN) to further improve the quality of screen content sequences at the decoder side. To exploit the characteristics of the screen content sequences, we extract the mode information from the bitstream as the input of MICNN. Furthermore, due to the limited number of screen content sequences, we establish a large-scale dataset to train and validate our MICNN. Experimental results show that our proposed MICNN can achieve 3.41% BD-rate saving on average. In addition, our MICNN method consumes acceptable computational time compared with the other video quality enhancement methods.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE access, 2023, v. 11, p. 24149-24161en_US
dcterms.isPartOfIEEE accessen_US
dcterms.issued2023-
dc.identifier.isiWOS:000952508700001-
dc.identifier.scopus2-s2.0-85148419376-
dc.identifier.eissn2169-3536en_US
dc.description.validate202305 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS, a2267-
dc.identifier.SubFormID47271-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Mode_Information_Guided_CNN.pdf4.4 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

116
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

102
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

6
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.