Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98665
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorKovács, Ben_US
dc.creatorLi, Ben_US
dc.creatorLubich, Cen_US
dc.date.accessioned2023-05-10T02:00:58Z-
dc.date.available2023-05-10T02:00:58Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/98665-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2016 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Kovács, B., Li, B., & Lubich, C. (2016). A-stable time discretizations preserve maximal parabolic regularity. SIAM Journal on Numerical Analysis, 54(6), 3600-3624 is available at https://doi.org/10.1137/15M1040918.en_US
dc.subjectMaximal regularityen_US
dc.subjectA-stabilityen_US
dc.subjectMultistep methodsen_US
dc.subjectRunge–Kutta methodsen_US
dc.subjectParabolic equationsen_US
dc.titleA-stable time discretizations preserve maximal parabolic regularityen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3600en_US
dc.identifier.epage3624en_US
dc.identifier.volume54en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1137/15M1040918en_US
dcterms.abstractIt is shown that for a parabolic problem with maximal Lp-regularity (for 1 < p < ∞), the time discretization by a linear multistep method or Runge-Kutta method has maximal ℓp-regularity uniformly in the stepsize if the method is A-stable (and satisfies minor additional conditions). In particular, the implicit Euler method, the Crank-Nicolson method, the second-order backward difference formula (BDF), and the Radau IIA and Gauss Runge-Kutta methods of all orders preserve maximal regularity. The proof uses Weis' characterization of maximal Lp-regularity in terms of R-boundedness of the resolvent, a discrete operator-valued Fourier multiplier theorem by Blunck, and generating function techniques that have been familiar in the stability analysis of time discretization methods since the work of Dahlquist. The A(α)-stable higher-order BDF methods have maximal ℓp-regularity under an R-boundedness condition in a larger sector. As an illustration of the use of maximal regularity in the error analysis of discretized nonlinear parabolic equations, it is shown how error bounds are obtained without using any growth condition on the nonlinearity or for nonlinearities having singularities.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2016, v. 54, no. 6, p. 3600-3624en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2016-
dc.identifier.scopus2-s2.0-85007030676-
dc.identifier.eissn1095-7170en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0605-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6708069-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
15m1040918.pdf458.87 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

106
Citations as of Nov 10, 2025

Downloads

79
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

54
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

50
Citations as of May 15, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.