Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98654
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Ben_US
dc.creatorSun, Wen_US
dc.date.accessioned2023-05-10T02:00:54Z-
dc.date.available2023-05-10T02:00:54Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/98654-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2017 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Li, B., & Sun, W. (2017). Maximal regularity of fully discrete finite element solutions of parabolic equations. SIAM Journal on Numerical Analysis, 55(2), 521-542 is available at https://doi.org/10.1137/16M1071912.en_US
dc.subjectNonlinear parabolic equationsen_US
dc.subjectBDF methodsen_US
dc.subjectDiscrete maximal parabolic regularityen_US
dc.subjectMaximum-norm error analysisen_US
dc.subjectEnergy techniqueen_US
dc.subjectTime-dependent normsen_US
dc.titleMaximal regularity of fully discrete finite element solutions of parabolic equationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage521en_US
dc.identifier.epage542en_US
dc.identifier.volume55en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1137/16M1071912en_US
dcterms.abstractWe establish the maximal lp-regularity for fully discrete finite element solutions of parabolic equations with time-dependent Lipschitz continuous coefficients. The analysis is based on a discrete lp(W1,q) estimate together with a duality argument and a perturbation method. Optimalorder error estimates of fully discrete finite element solutions in the norm of lp(Lq) follows immediately.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2017, v. 55, no. 2, p. 521-542en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2017-
dc.identifier.scopus2-s2.0-85019008154-
dc.identifier.eissn1095-7170en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0521-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFC; Alexander von Humboldt Foundationen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6745018-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
16m1071912.pdf257.33 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

102
Last Week
22
Last month
Citations as of Nov 10, 2025

Downloads

90
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

17
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

18
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.