Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98651
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Ben_US
dc.creatorZhang, Zen_US
dc.date.accessioned2023-05-10T02:00:53Z-
dc.date.available2023-05-10T02:00:53Z-
dc.identifier.issn0025-5718en_US
dc.identifier.urihttp://hdl.handle.net/10397/98651-
dc.language.isoenen_US
dc.publisherAmerican Mathematical Societyen_US
dc.rightsFirst published in Math. Comp. 86(306), 2017, 1579-1608, published by the American Mathematical Society.© 2016 American Mathematical Society.en_US
dc.rightsThis manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.subjectConvergenceen_US
dc.subjectFinite element methoden_US
dc.subjectHodge decompositionen_US
dc.subjectReentrant corneren_US
dc.subjectSingularityen_US
dc.subjectSuperconductivityen_US
dc.subjectWell-posednessen_US
dc.titleMathematical and numerical analysis of the time-dependent Ginzburg-Landau equations in nonconvex polygons based on Hodge decompositionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1579en_US
dc.identifier.epage1608en_US
dc.identifier.volume86en_US
dc.identifier.issue306en_US
dc.identifier.doi10.1090/mcom/3177en_US
dcterms.abstractWe prove well-posedness of the time-dependent Ginzburg-Landau system in a nonconvex polygonal domain, and decompose the solution as a regular part plus a singular part. We see that the magnetic potential is not in H1(Ω) in general, and so the finite element method (FEM) may give incorrect solutions. To overcome this difficulty, we reformulate the equations into an equivalent system of elliptic and parabolic equations based on the Hodge decomposition, which avoids direct calculation of the magnetic potential. The essential unknowns of the reformulated system admit H1 solutions and can be solved correctly by the FEMs. We then propose a decoupled and linearized FEM to solve the reformulated equations and present error estimates based on the proved regularity of the solution. Numerical examples are provided to support our theoretical analysis and show the efficiency of the method.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematics of computation, 2017, v. 86, no. 306, p. 1579-1608en_US
dcterms.isPartOfMathematics of computationen_US
dcterms.issued2017-
dc.identifier.scopus2-s2.0-85016175717-
dc.identifier.eissn1088-6842en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0518-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6734662-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Mathematical_Numerical_Analysis.pdfPre-Published version1.23 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

61
Citations as of Apr 14, 2025

Downloads

27
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

24
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

20
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.