Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98646
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorGao, Hen_US
dc.creatorLi, Ben_US
dc.creatorSun, Wen_US
dc.date.accessioned2023-05-10T02:00:51Z-
dc.date.available2023-05-10T02:00:51Z-
dc.identifier.issn0029-599Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/98646-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag Berlin Heidelberg 2016en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00211-016-0843-9.en_US
dc.subjectFinite element methoden_US
dc.subjectNonconvex polygonen_US
dc.subjectUnconditional stabilityen_US
dc.subjectOptimal error estimateen_US
dc.subjectThermistor problemen_US
dc.titleStability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygonen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage383en_US
dc.identifier.epage409en_US
dc.identifier.volume136en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1007/s00211-016-0843-9en_US
dcterms.abstractIn this paper, we establish the unconditional stability and optimal error estimates of a linearized backward Euler–Galerkin finite element method (FEM) for the time-dependent nonlinear thermistor equations in a two-dimensional nonconvex polygon. Due to the nonlinearity of the equations and the non-smoothness of the solution in a nonconvex polygon, the analysis is not straightforward, while most previous efforts for problems in nonconvex polygons mainly focused on linear models. Our theoretical analysis is based on an error splitting proposed in [30, 31] together with rigorous regularity analysis of the nonlinear thermistor equations and the corresponding iterated (time-discrete) elliptic system in a nonconvex polygon. With the proved regularity, we establish the stability in l∞(L∞) and the convergence in l∞(L2) for the fully discrete finite element solution without any restriction on the time-step size. The approach used in this paper may also be applied to other nonlinear parabolic systems in nonconvex polygons. Numerical results confirm our theoretical analysis and show clearly that no time-step condition is needed.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNumerische mathematik, June 2017, v. 136, no. 2, p. 383-409en_US
dcterms.isPartOfNumerische mathematiken_US
dcterms.issued2017-06-
dc.identifier.scopus2-s2.0-84990944650-
dc.identifier.eissn0945-3245en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0491-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFC; Alexander von Humboldt Foundationen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6685541-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Stability_Convergence_Fully.pdfPre-Published version1.12 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

76
Citations as of Apr 14, 2025

Downloads

40
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

17
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

16
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.