Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98641
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Ben_US
dc.creatorYang, Cen_US
dc.date.accessioned2023-05-10T02:00:50Z-
dc.date.available2023-05-10T02:00:50Z-
dc.identifier.issn0022-247Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/98641-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2017 Elsevier Inc. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Li, B., & Yang, C. (2017). Global well-posedness of the time-dependent Ginzburg–Landau superconductivity model in curved polyhedra. Journal of Mathematical Analysis and Applications, 451(1), 102-116 is available at https://doi.org/10.1016/j.jmaa.2017.02.007.en_US
dc.subjectSuperconductivityen_US
dc.subjectCurved polyhedronen_US
dc.subjectCorneren_US
dc.subjectSingularityen_US
dc.subjectWell-posednessen_US
dc.titleGlobal well-posedness of the time-dependent Ginzburg–Landau superconductivity model in curved polyhedra☆en_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage102en_US
dc.identifier.epage116en_US
dc.identifier.volume451en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1016/j.jmaa.2017.02.007en_US
dcterms.abstractWe prove global existence and uniqueness of weak solutions for the time-dependent Ginzburg–Landau equations in a three-dimensional curved polyhedron which is not necessarily convex, where the gradient of the magnetic potential may not be square integrable. Preceding analyses all required the gradient of the solution to be square integrable, which is only true in convex or smooth domains.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of mathematical analysis and applications, 1 July 2017, v. 451, no. 1, p. 102-116en_US
dcterms.isPartOfJournal of mathematical analysis and applicationsen_US
dcterms.issued2017-07-01-
dc.identifier.scopus2-s2.0-85012903418-
dc.identifier.eissn1096-0813en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0481-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6722901-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Global_Well-Posedness_Time-Dependent.pdfPre-Published version844.49 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

59
Citations as of Apr 14, 2025

Downloads

24
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

11
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

10
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.