Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/98637
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Cui, J | en_US |
| dc.creator | Li, CK | en_US |
| dc.creator | Sze, NS | en_US |
| dc.date.accessioned | 2023-05-10T02:00:48Z | - |
| dc.date.available | 2023-05-10T02:00:48Z | - |
| dc.identifier.issn | 0022-247X | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/98637 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Academic Press | en_US |
| dc.rights | © 2017 Published by Elsevier Inc. | en_US |
| dc.rights | © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. | en_US |
| dc.rights | The following publication Cui, J., Li, C. K., & Sze, N. S. (2017). Unitary similarity invariant function preservers of skew products of operators. Journal of Mathematical Analysis and Applications, 454(2), 716-729 is available at https://doi.org/10.1016/j.jmaa.2017.04.072. | en_US |
| dc.subject | Unitary similarity in variant function | en_US |
| dc.subject | Generalized numerical radius | en_US |
| dc.subject | Pseudo spectrum | en_US |
| dc.title | Unitary similarity invariant function preservers of skew products of operators | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 716 | en_US |
| dc.identifier.epage | 729 | en_US |
| dc.identifier.volume | 454 | en_US |
| dc.identifier.issue | 2 | en_US |
| dc.identifier.doi | 10.1016/j.jmaa.2017.04.072 | en_US |
| dcterms.abstract | Let B(H) denote the Banach algebra of all bounded linear operators on a complex Hilbert space H with dimH≥3, and let A and B be subsets of B(H) which contain all rank one operators. Suppose F(⋅) is a unitary invariant norm, the pseudo spectra, the pseudo spectral radius, the C-numerical range, or the C-numerical radius for some finite rank operator C. The structure is determined for surjective maps Φ:A→B satisfying F(A⁎B)=F(Φ(A)⁎Φ(B)) for all A,B∈A. To establish the proofs, some general results are obtained for functions F:F1(H)∪{0}→[0,+∞), where F1(H) is the set of rank one operators in B(H), satisfying (a) F(μUAU⁎)=F(A) for a complex unit μ, A∈F1(H) and unitary U∈B(H), (b) for any rank one operator X∈F1(H) the map t↦F(tX) on [0,∞) is strictly increasing, and (c) the set {F(X):X∈F1(H) and ‖X‖=1} attains its maximum and minimum. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Journal of mathematical analysis and applications, 15 Oct. 2017, v. 454, no. 2, p. 716-729 | en_US |
| dcterms.isPartOf | Journal of mathematical analysis and applications | en_US |
| dcterms.issued | 2017-10-15 | - |
| dc.identifier.scopus | 2-s2.0-85019904714 | - |
| dc.identifier.eissn | 1096-0813 | en_US |
| dc.description.validate | 202305 bcch | en_US |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | AMA-0461 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | PolyU | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 6749308 | - |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Sze_Unitary_Similarity_Invariant.pdf | Pre-Published version | 807.98 kB | Adobe PDF | View/Open |
Page views
66
Citations as of Apr 14, 2025
Downloads
34
Citations as of Apr 14, 2025
SCOPUSTM
Citations
19
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
14
Citations as of Oct 10, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



