Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98637
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorCui, Jen_US
dc.creatorLi, CKen_US
dc.creatorSze, NSen_US
dc.date.accessioned2023-05-10T02:00:48Z-
dc.date.available2023-05-10T02:00:48Z-
dc.identifier.issn0022-247Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/98637-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2017 Published by Elsevier Inc.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Cui, J., Li, C. K., & Sze, N. S. (2017). Unitary similarity invariant function preservers of skew products of operators. Journal of Mathematical Analysis and Applications, 454(2), 716-729 is available at https://doi.org/10.1016/j.jmaa.2017.04.072.en_US
dc.subjectUnitary similarity in variant functionen_US
dc.subjectGeneralized numerical radiusen_US
dc.subjectPseudo spectrumen_US
dc.titleUnitary similarity invariant function preservers of skew products of operatorsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage716en_US
dc.identifier.epage729en_US
dc.identifier.volume454en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1016/j.jmaa.2017.04.072en_US
dcterms.abstractLet B(H) denote the Banach algebra of all bounded linear operators on a complex Hilbert space H with dim⁡H≥3, and let A and B be subsets of B(H) which contain all rank one operators. Suppose F(⋅) is a unitary invariant norm, the pseudo spectra, the pseudo spectral radius, the C-numerical range, or the C-numerical radius for some finite rank operator C. The structure is determined for surjective maps Φ:A→B satisfying F(A⁎B)=F(Φ(A)⁎Φ(B)) for all A,B∈A. To establish the proofs, some general results are obtained for functions F:F1(H)∪{0}→[0,+∞), where F1(H) is the set of rank one operators in B(H), satisfying (a) F(μUAU⁎)=F(A) for a complex unit μ, A∈F1(H) and unitary U∈B(H), (b) for any rank one operator X∈F1(H) the map t↦F(tX) on [0,∞) is strictly increasing, and (c) the set {F(X):X∈F1(H) and ‖X‖=1} attains its maximum and minimum.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of mathematical analysis and applications, 15 Oct. 2017, v. 454, no. 2, p. 716-729en_US
dcterms.isPartOfJournal of mathematical analysis and applicationsen_US
dcterms.issued2017-10-15-
dc.identifier.scopus2-s2.0-85019904714-
dc.identifier.eissn1096-0813en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0461-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyUen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6749308-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Sze_Unitary_Similarity_Invariant.pdfPre-Published version807.98 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

66
Citations as of Apr 14, 2025

Downloads

34
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

19
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

14
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.