Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98636
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorKovács, Ben_US
dc.creatorLi, Ben_US
dc.creatorLubich, Cen_US
dc.creatorPower Guerra, CAen_US
dc.date.accessioned2023-05-10T02:00:48Z-
dc.date.available2023-05-10T02:00:48Z-
dc.identifier.issn0029-599Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/98636-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag Berlin Heidelberg 2017en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00211-017-0888-4.en_US
dc.titleConvergence of finite elements on an evolving surface driven by diffusion on the surfaceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage643en_US
dc.identifier.epage689en_US
dc.identifier.volume137en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1007/s00211-017-0888-4en_US
dcterms.abstractFor a parabolic surface partial differential equation coupled to surface evolution, convergence of the spatial semidiscretization is studied in this paper. The velocity of the evolving surface is not given explicitly, but depends on the solution of the parabolic equation on the surface. Various velocity laws are considered: elliptic regularization of a direct pointwise coupling, a regularized mean curvature flow and a dynamic velocity law. A novel stability and convergence analysis for evolving surface finite elements for the coupled problem of surface diffusion and surface evolution is developed. The stability analysis works with the matrix–vector formulation of the method and does not use geometric arguments. The geometry enters only into the consistency estimates. Numerical experiments complement the theoretical results.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNumerische mathematik, Nov. 2017, v. 137, no. 3, p. 643-689en_US
dcterms.isPartOfNumerische mathematiken_US
dcterms.issued2017-11-
dc.identifier.scopus2-s2.0-85018351436-
dc.identifier.eissn0945-3245en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0455-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6741356-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Convergence_Finite_Elements.pdfPre-Published version1.29 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

78
Citations as of Apr 14, 2025

Downloads

51
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

35
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

21
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.