Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98634
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Ben_US
dc.date.accessioned2023-05-10T02:00:47Z-
dc.date.available2023-05-10T02:00:47Z-
dc.identifier.issn0008-0624en_US
dc.identifier.urihttp://hdl.handle.net/10397/98634-
dc.language.isoenen_US
dc.publisherSpringer Milanoen_US
dc.rights© Springer-Verlag Italia S.r.l. 2017en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10092-017-0237-0.en_US
dc.subjectGinzburg–Landauen_US
dc.subjectSuperconductivityen_US
dc.subjectFinite element methoden_US
dc.subjectConvergenceen_US
dc.subjectIncompatible dataen_US
dc.subjectNonconvex polyhedraen_US
dc.titleConvergence of a decoupled mixed FEM for the dynamic Ginzburg–Landau equations in nonsmooth domains with incompatible initial dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1441en_US
dc.identifier.epage1480en_US
dc.identifier.volume54en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1007/s10092-017-0237-0en_US
dcterms.abstractIn this paper, we propose a fully discrete mixed finite element method for solving the time-dependent Ginzburg–Landau equations, and prove the convergence of the finite element solutions in general curved polyhedra, possibly nonconvex and multi-connected, without assumptions on the regularity of the solution. Global existence and uniqueness of weak solutions for the PDE problem are also obtained in the meantime. A decoupled time-stepping scheme is introduced, which guarantees that the discrete solution has bounded discrete energy, and the finite element spaces are chosen to be compatible with the nonlinear structure of the equations. Based on the boundedness of the discrete energy, we prove the convergence of the finite element solutions by utilizing a uniform L3 + δ regularity of the discrete harmonic vector fields, establishing a discrete Sobolev embedding inequality for the Nédélec finite element space, and introducing a ℓ2(W1 , 3 + δ) estimate for fully discrete solutions of parabolic equations. The numerical example shows that the constructed mixed finite element solution converges to the true solution of the PDE problem in a nonsmooth and multi-connected domain, while the standard Galerkin finite element solution does not converge.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCalcolo, Dec. 2017, v. 54, no. 4, p. 1441-1480en_US
dcterms.isPartOfCalcoloen_US
dcterms.issued2017-12-
dc.identifier.scopus2-s2.0-85028620368-
dc.identifier.eissn1126-5434en_US
dc.description.validate202305 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0448-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6777943-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Convergence_Decoupled_Mixed.pdfPre-Published version1.11 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

52
Citations as of Apr 14, 2025

Downloads

32
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

12
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

11
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.