Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/98629
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorGunzburger, Men_US
dc.creatorHe, Xen_US
dc.creatorLi, Ben_US
dc.date.accessioned2023-05-10T02:00:45Z-
dc.date.available2023-05-10T02:00:45Z-
dc.identifier.issn0036-1429en_US
dc.identifier.urihttp://hdl.handle.net/10397/98629-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2018 Society for Industrial and Applied Mathematicsen_US
dc.rightsThe following publication Gunzburger, M., He, X., & Li, B. (2018). On Stokes--Ritz projection and multistep backward differentiation schemes in decoupling the Stokes--Darcy model. SIAM Journal on Numerical Analysis, 56(1), 397-427 is available at https://doi.org/10.1137/16M1099601.en_US
dc.subjectStokes–Darcy flowen_US
dc.subjectFinite elementsen_US
dc.subjectStokes–Ritz projectionen_US
dc.subjectBackward differentiationen_US
dc.subjectDomain decompositionen_US
dc.titleOn Stokes--Ritz projection and multistep backward differentiation schemes in decoupling the Stokes--Darcy modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage397en_US
dc.identifier.epage427en_US
dc.identifier.volume56en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/16M1099601en_US
dcterms.abstractWe analyze a parallel, noniterative, multiphysics domain decomposition method for decoupling the Stokes–Darcy model with multistep backward differentiation schemes for the time discretization and finite elements for the spatial discretization. Based on a rigorous analysis of the Ritz projection error shown in this article, we prove almost optimal L2 convergence of the numerical solution. In order to estimate the Ritz projection error on the interface, which plays a key role in the error analysis of the Stokes–Darcy problem, we derive L∞ error estimate of the Stokes–Ritz projection under the stress boundary condition for the first time in the literature. The k-step backward differentiation schemes, which are important to improve the accuracy in time discretization with unconditional stability, are analyzed in a general framework for any k ≤ 5. The unconditional stability and high accuracy of these schemes can allow relatively larger time step sizes for given accuracy requirements and hence save a significant amount of computational cost.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2018, v. 56, no. 1, p. 397-427en_US
dcterms.isPartOfSIAM journal on numerical analysisen_US
dcterms.issued2018-
dc.identifier.scopus2-s2.0-85043469671-
dc.identifier.eissn1095-7170en_US
dc.description.validate202305 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAMA-0431-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6827230-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
16m1099601.pdf463.69 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

87
Last Week
4
Last month
Citations as of Nov 10, 2025

Downloads

83
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

45
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

46
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.